Difference between revisions of "1993 USAMO Problems"
m (→Problem 3) |
(→Problem 4) |
||
Line 36: | Line 36: | ||
Let <math>a</math>, <math>b</math> be odd positive integers. Define the sequence <math>(f_n)</math> by putting <math>f_1 = a</math>, | Let <math>a</math>, <math>b</math> be odd positive integers. Define the sequence <math>(f_n)</math> by putting <math>f_1 = a</math>, | ||
− | <math>f_2 = b</math>, and by letting | + | <math>f_2 = b</math>, and by letting <math>f_n</math> for <math>n\ge3</math> be the greatest odd divisor of <math>f_{n-1} + f_{n-2}</math>. |
Show that <math>f_n</math> is constant for <math>n</math> sufficiently large and determine the eventual | Show that <math>f_n</math> is constant for <math>n</math> sufficiently large and determine the eventual | ||
value as a function of <math>a</math> and <math>b</math>. | value as a function of <math>a</math> and <math>b</math>. |
Revision as of 20:08, 22 February 2012
Problem 1
For each integer , determine, with proof, which of the two positive real numbers and satisfying
is larger.
Problem 2
Let be a convex quadrilateral such that diagonals and intersect at right angles, and let be their intersection. Prove that the reflections of across , , , are concyclic.
Problem 3
Consider functions which satisfy
(i) | for all in , | |
(ii) | , | |
(iii) | whenever , , and are all in . |
Find, with proof, the smallest constant such that
for every function satisfying (i)-(iii) and every in .
Problem 4
Let , be odd positive integers. Define the sequence by putting , , and by letting for be the greatest odd divisor of . Show that is constant for sufficiently large and determine the eventual value as a function of and .
Problem 5
Let be a sequence of positive real numbers satisfying for . (Such a sequence is said to be log concave.) Show that for each ,