Difference between revisions of "2010 AMC 12A Problems/Problem 1"

(Solution)
m (Semi-automated contest formatting - script by azjps)
Line 1: Line 1:
== Problem 1 ==
+
== Problem ==
 
What is <math>\left(20-\left(2010-201\right)\right)+\left(2010-\left(201-20\right)\right)</math>?
 
What is <math>\left(20-\left(2010-201\right)\right)+\left(2010-\left(201-20\right)\right)</math>?
  
Line 6: Line 6:
 
== Solution ==
 
== Solution ==
 
<math>20-2010+201+2010-201+20=20+20=40; \boxed{\textbf{(C)}}</math>.
 
<math>20-2010+201+2010-201+20=20+20=40; \boxed{\textbf{(C)}}</math>.
 +
 +
== See also ==
 +
{{AMC12 box|year=2010|before=First Problem|num-a=2|ab=A}}
 +
 +
[[Category:Introductory Algebra Problems]]

Revision as of 20:50, 25 February 2010

Problem

What is $\left(20-\left(2010-201\right)\right)+\left(2010-\left(201-20\right)\right)$?

$\textbf{(A)}\ -4020 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 401 \qquad \textbf{(E)}\ 4020$

Solution

$20-2010+201+2010-201+20=20+20=40; \boxed{\textbf{(C)}}$.

See also

2010 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions