Difference between revisions of "2010 AMC 12A Problems/Problem 8"
(Created page with '== Problem 8 == Triangle <math>ABC</math> has <math>AB=2 \cdot AC</math>. Let <math>D</math> and <math>E</math> be on <math>\overline{AB}</math> and <math>\overline{BC}</math>, r…') |
m (Semi-automated contest formatting - script by azjps) |
||
Line 1: | Line 1: | ||
− | == Problem | + | == Problem == |
Triangle <math>ABC</math> has <math>AB=2 \cdot AC</math>. Let <math>D</math> and <math>E</math> be on <math>\overline{AB}</math> and <math>\overline{BC}</math>, respectively, such that <math>\angle BAE = \angle ACD</math>. Let <math>F</math> be the intersection of segments <math>AE</math> and <math>CD</math>, and suppose that <math>\triangle CFE</math> is equilateral. What is <math>\angle ACB</math>? | Triangle <math>ABC</math> has <math>AB=2 \cdot AC</math>. Let <math>D</math> and <math>E</math> be on <math>\overline{AB}</math> and <math>\overline{BC}</math>, respectively, such that <math>\angle BAE = \angle ACD</math>. Let <math>F</math> be the intersection of segments <math>AE</math> and <math>CD</math>, and suppose that <math>\triangle CFE</math> is equilateral. What is <math>\angle ACB</math>? | ||
Line 7: | Line 7: | ||
Let <math>\angle BAE = \angle ACD = x</math>. | Let <math>\angle BAE = \angle ACD = x</math>. | ||
− | < | + | <cmath>\begin{align*}&ngle BCD = \angle AEC = 60^\circ\\ |
+ | &\angle EAC + \angle FCA + \angle ECF + \angle AEC = \angle EAC + x + 60^\circ + 60^\circ = 180^\circ\\ | ||
+ | &\angle EAC = 60^\circ - x\\ | ||
+ | &\angle BAC = \angle EAC + \angle BAE = 60^\circ - x + x = 60^\circ\end{align*}</cmath> | ||
− | <math>\ | + | Since <math>\frac{AC}{AB} = \frac{1}{2}</math>, <math>\angle BCA = \boxed{90^\circ\ \textbf{(C)}}</math> |
− | + | == See also == | |
+ | {{AMC12 box|year=2010|num-b=7|num-a=9|ab=A}} | ||
− | + | [[Category:Introductory Geometry Problems]] | |
− | |||
− |
Revision as of 22:00, 25 February 2010
Problem
Triangle has . Let and be on and , respectively, such that . Let be the intersection of segments and , and suppose that is equilateral. What is ?
Solution
Let .
Since ,
See also
2010 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |