Difference between revisions of "2002 AMC 10B Problems/Problem 18"

(Created page with '== Problem == Four distinct circles are drawn in a plane. What is the maximum number of points where at least two of the circles intersect? <math>\textbf{(A) } 8\qquad \textbf{…')
 
m (Problem)
Line 4: Line 4:
  
 
<math>\textbf{(A) } 8\qquad \textbf{(B) } 9\qquad \textbf{(C) } 10\qquad \textbf{(D) } 12\qquad \textbf{(E) } 16\</math>
 
<math>\textbf{(A) } 8\qquad \textbf{(B) } 9\qquad \textbf{(C) } 10\qquad \textbf{(D) } 12\qquad \textbf{(E) } 16\</math>
 +
 +
== Solution ==

Revision as of 13:12, 26 March 2010

Problem

Four distinct circles are drawn in a plane. What is the maximum number of points where at least two of the circles intersect?

$\textbf{(A) } 8\qquad \textbf{(B) } 9\qquad \textbf{(C) } 10\qquad \textbf{(D) } 12\qquad \textbf{(E) } 16$

Solution