Difference between revisions of "1993 AIME Problems/Problem 8"

(See also)
(Solution)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
Call the two subsets <math>m</math> and <math>n</math>. For each of the elements in <math>S</math>, we can assign it to either <math>m</math>, <math>n</math>, or both. This gives us <math>3^6</math> possible methods of selection. However, because the order of the subsets does not matter, each possible selection is double counted, except the case where both <math>m</math> and <math>n</math> contain all <math>6</math> elements of <math>s</math>. So our final answer is then <math>\frac {3^6 - 1}{2} + 1 = \boxed{365}</math>
+
Call the two subsets <math>m</math> and <math>n</math>. For each of the elements in <math>S</math>, we can assign it to either <math>m</math>, <math>n</math>, or both. This gives us <math>3^6</math> possible methods of selection. However, because the order of the subsets does not matter, each possible selection is double counted, except the case where both <math>m</math> and <math>n</math> contain all <math>6</math> elements of <math>S</math>. So our final answer is then <math>\frac {3^6 - 1}{2} + 1 = \boxed{365}</math>
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1993|num-b=7|num-a=9}}
 
{{AIME box|year=1993|num-b=7|num-a=9}}

Revision as of 00:06, 7 December 2009

Problem

Let $S\,$ be a set with six elements. In how many different ways can one select two not necessarily distinct subsets of $S\,$ so that the union of the two subsets is $S\,$? The order of selection does not matter; for example, the pair of subsets $\{a, c\}\,$, $\{b, c, d, e, f\}\,$ represents the same selection as the pair $\{b, c, d, e, f\}\,$, $\{a, c\}\,$.

Solution

Call the two subsets $m$ and $n$. For each of the elements in $S$, we can assign it to either $m$, $n$, or both. This gives us $3^6$ possible methods of selection. However, because the order of the subsets does not matter, each possible selection is double counted, except the case where both $m$ and $n$ contain all $6$ elements of $S$. So our final answer is then $\frac {3^6 - 1}{2} + 1 = \boxed{365}$

See also

1993 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions