Difference between revisions of "1963 IMO Problems/Problem 5"
Suvamghosh (talk | contribs) (→Solution) |
(LaTeX'd solution, added my own) |
||
Line 2: | Line 2: | ||
Prove that <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}</math>. | Prove that <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}</math>. | ||
− | ==Solution== | + | ==Solutions== |
− | {{ | + | ===Solution 1=== |
+ | Let <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=S</math>. We have | ||
+ | <cmath>S=\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\cos{\frac{\pi}{7}}+\cos{\frac{3\pi}{7}}+\cos{\frac{5\pi}{7}}</cmath> | ||
− | + | Then, by product-sum formulae, we have | |
− | = | + | |
− | = | + | <cmath>S * 2* \sin{\frac{\pi}{7}} = \sin{\frac{2\pi}{7}}+\sin{\frac{4\pi}{7}}-\sin{\frac{2\pi}{7}}+\sin{\frac{6\pi}{7}}-\sin{\frac{4\pi}{7}}=\sin{\frac{6\pi}{7}}=\sin{\frac{\pi}{7}}</cmath> |
+ | |||
+ | Thus <math>S = 1/2</math>. <math>\blacksquare</math> | ||
− | + | ===Solution 2=== | |
− | S | + | Let <math>a=\sin{\frac{\pi}{7}}</math> and <math>b=\cos{\frac{\pi}{7}}</math>. From the addition formulae, we have |
− | = | + | |
+ | <cmath>S=b-[b^2-a^2]+[ b(b^2-a^2)-a(2ab) ]=b-b^2+b^3+a^2(1-3b)</cmath> | ||
+ | |||
+ | From the Trigonometric Identity, <math>a^2=1-b^2</math>, so | ||
+ | |||
+ | <cmath>S=b-b^2+b^3+(1-b^2)(1-3b)=4b^3-2b^2-2b+1</cmath> | ||
+ | |||
+ | We must prove that <math>S=1/2</math>. It suffices to show that <math>8b^3-4b^2-4b+1=0</math>. | ||
+ | |||
+ | Now note that <math>\cos{\frac{4\pi}{7}}=-\cos{\frac{3\pi}{7}}</math>. We can find these in terms of <math>a</math> and <math>b</math>: | ||
+ | |||
+ | <cmath>\cos{\frac{4\pi}{7}}=[b^2-a^2]^2-[2ab]^2=b^4-6a^2b^2+b^4=b^4-6(1-b^2)b^2+b^4=8b^4-8b^2+1</cmath> | ||
+ | |||
+ | <cmath>\cos{\frac{3\pi}{7}}=b[b^2-a^2]-a[2ab]=b^3-3a^2b=b^3-3(1-b^2)b=3b-4b^3</cmath> | ||
+ | |||
+ | Therefore <math>8b^4-8b^2+1=-(3b-4b^3)\Rightarrow 8b^4+4b^3-8b^2-3b+1=0</math>. Note that this can be factored: | ||
+ | |||
+ | <cmath>8b^4+4b^3-8b^2-3b+1=(8b^3-4b^2-4b+1)(b+1)=0</cmath> | ||
− | + | Clearly <math>b\neq -1</math>, so <math>8b^3-4b^2-4b+1=0</math>. This proves the result. <math>\blacksquare</math> | |
==See Also== | ==See Also== | ||
{{IMO box|year=1963|num-b=4|num-a=6}} | {{IMO box|year=1963|num-b=4|num-a=6}} |
Revision as of 10:13, 29 March 2012
Problem
Prove that .
Solutions
Solution 1
Let . We have
Then, by product-sum formulae, we have
Thus .
Solution 2
Let and . From the addition formulae, we have
From the Trigonometric Identity, , so
We must prove that . It suffices to show that .
Now note that . We can find these in terms of and :
Therefore . Note that this can be factored:
Clearly , so . This proves the result.
See Also
1963 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |