Difference between revisions of "1963 IMO Problems/Problem 5"

(Solution)
(LaTeX'd solution, added my own)
Line 2: Line 2:
 
Prove that <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}</math>.
 
Prove that <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}</math>.
  
==Solution==
+
==Solutions==
{{solution}}
+
===Solution 1===
 +
Let <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=S</math>. We have
  
 +
<cmath>S=\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\cos{\frac{\pi}{7}}+\cos{\frac{3\pi}{7}}+\cos{\frac{5\pi}{7}}</cmath>
  
We have S
+
Then, by product-sum formulae, we have
= cos(π/7) - cos(2π/7) + cos(3π/7)
+
 
= cos(π/7) + cos(3π/7) + cos(5π/7)
+
<cmath>S * 2* \sin{\frac{\pi}{7}} = \sin{\frac{2\pi}{7}}+\sin{\frac{4\pi}{7}}-\sin{\frac{2\pi}{7}}+\sin{\frac{6\pi}{7}}-\sin{\frac{4\pi}{7}}=\sin{\frac{6\pi}{7}}=\sin{\frac{\pi}{7}}</cmath>
 +
 
 +
Thus <math>S = 1/2</math>. <math>\blacksquare</math>
  
Then, by product-sum formulae, we have
+
===Solution 2===
S * 2* sin(π/7) = sin(/7) + sin(4π/7) - sin(2π/7) + sin(6π/7) - sin(/7)
+
Let <math>a=\sin{\frac{\pi}{7}}</math> and <math>b=\cos{\frac{\pi}{7}}</math>. From the addition formulae, we have
= sin(6π/7) = sin(π/7)
+
 
 +
<cmath>S=b-[b^2-a^2]+[ b(b^2-a^2)-a(2ab) ]=b-b^2+b^3+a^2(1-3b)</cmath>
 +
 
 +
From the Trigonometric Identity, <math>a^2=1-b^2</math>, so
 +
 
 +
<cmath>S=b-b^2+b^3+(1-b^2)(1-3b)=4b^3-2b^2-2b+1</cmath>
 +
 
 +
We must prove that <math>S=1/2</math>. It suffices to show that <math>8b^3-4b^2-4b+1=0</math>.
 +
 
 +
Now note that <math>\cos{\frac{4\pi}{7}}=-\cos{\frac{3\pi}{7}}</math>. We can find these in terms of <math>a</math> and <math>b</math>:
 +
 
 +
<cmath>\cos{\frac{4\pi}{7}}=[b^2-a^2]^2-[2ab]^2=b^4-6a^2b^2+b^4=b^4-6(1-b^2)b^2+b^4=8b^4-8b^2+1</cmath>
 +
 
 +
<cmath>\cos{\frac{3\pi}{7}}=b[b^2-a^2]-a[2ab]=b^3-3a^2b=b^3-3(1-b^2)b=3b-4b^3</cmath>
 +
 
 +
Therefore <math>8b^4-8b^2+1=-(3b-4b^3)\Rightarrow 8b^4+4b^3-8b^2-3b+1=0</math>. Note that this can be factored:
 +
 
 +
<cmath>8b^4+4b^3-8b^2-3b+1=(8b^3-4b^2-4b+1)(b+1)=0</cmath>
  
Thus S = 1/2
+
Clearly <math>b\neq -1</math>, so <math>8b^3-4b^2-4b+1=0</math>. This proves the result. <math>\blacksquare</math>
  
 
==See Also==
 
==See Also==
  
 
{{IMO box|year=1963|num-b=4|num-a=6}}
 
{{IMO box|year=1963|num-b=4|num-a=6}}

Revision as of 10:13, 29 March 2012

Problem

Prove that $\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}$.

Solutions

Solution 1

Let $\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=S$. We have

\[S=\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\cos{\frac{\pi}{7}}+\cos{\frac{3\pi}{7}}+\cos{\frac{5\pi}{7}}\]

Then, by product-sum formulae, we have

\[S * 2* \sin{\frac{\pi}{7}} = \sin{\frac{2\pi}{7}}+\sin{\frac{4\pi}{7}}-\sin{\frac{2\pi}{7}}+\sin{\frac{6\pi}{7}}-\sin{\frac{4\pi}{7}}=\sin{\frac{6\pi}{7}}=\sin{\frac{\pi}{7}}\]

Thus $S = 1/2$. $\blacksquare$

Solution 2

Let $a=\sin{\frac{\pi}{7}}$ and $b=\cos{\frac{\pi}{7}}$. From the addition formulae, we have

\[S=b-[b^2-a^2]+[ b(b^2-a^2)-a(2ab) ]=b-b^2+b^3+a^2(1-3b)\]

From the Trigonometric Identity, $a^2=1-b^2$, so

\[S=b-b^2+b^3+(1-b^2)(1-3b)=4b^3-2b^2-2b+1\]

We must prove that $S=1/2$. It suffices to show that $8b^3-4b^2-4b+1=0$.

Now note that $\cos{\frac{4\pi}{7}}=-\cos{\frac{3\pi}{7}}$. We can find these in terms of $a$ and $b$:

\[\cos{\frac{4\pi}{7}}=[b^2-a^2]^2-[2ab]^2=b^4-6a^2b^2+b^4=b^4-6(1-b^2)b^2+b^4=8b^4-8b^2+1\]

\[\cos{\frac{3\pi}{7}}=b[b^2-a^2]-a[2ab]=b^3-3a^2b=b^3-3(1-b^2)b=3b-4b^3\]

Therefore $8b^4-8b^2+1=-(3b-4b^3)\Rightarrow 8b^4+4b^3-8b^2-3b+1=0$. Note that this can be factored:

\[8b^4+4b^3-8b^2-3b+1=(8b^3-4b^2-4b+1)(b+1)=0\]

Clearly $b\neq -1$, so $8b^3-4b^2-4b+1=0$. This proves the result. $\blacksquare$

See Also

1963 IMO (Problems) • Resources
Preceded by
Problem 4
1 2 3 4 5 6 Followed by
Problem 6
All IMO Problems and Solutions