Difference between revisions of "1964 IMO Problems/Problem 6"
(→Solution) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In tetrahedron <math>ABCD</math>, vertex <math>D</math> is connected with <math>D_0</math>, the centrod of <math>\triangle ABC</math>. Lines parallel to <math>DD_0</math> are drawn through <math>A,B</math> and <math>C</math>. These lines intersect the planes <math>BCD, CAD</math> and <math>ABD</math> in points <math>A_1, B_1,</math> and <math>C_1</math>, respectively. Prove that the volume of <math>ABCD</math> is one third the volume of <math>A_1B_1C_1D_0</math>. Is the result true if point <math>D_o</math> is selected anywhere within <math>\triangle ABC</math> | + | In tetrahedron <math>ABCD</math>, vertex <math>D</math> is connected with <math>D_0</math>, the centrod of <math>\triangle ABC</math>. Lines parallel to <math>DD_0</math> are drawn through <math>A,B</math> and <math>C</math>. These lines intersect the planes <math>BCD, CAD</math> and <math>ABD</math> in points <math>A_1, B_1,</math> and <math>C_1</math>, respectively. Prove that the volume of <math>ABCD</math> is one third the volume of <math>A_1B_1C_1D_0</math>. Is the result true if point <math>D_o</math> is selected anywhere within <math>\triangle ABC</math>? |
== Solution == | == Solution == | ||
{{solution}} | {{solution}} |
Revision as of 10:40, 16 July 2009
Problem
In tetrahedron , vertex is connected with , the centrod of . Lines parallel to are drawn through and . These lines intersect the planes and in points and , respectively. Prove that the volume of is one third the volume of . Is the result true if point is selected anywhere within ?
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.