Difference between revisions of "2009 USAMO Problems/Problem 4"
(→Solution) |
m (tex) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
For <math>n \ge 2</math> let <math>a_1</math>, <math>a_2</math>, ..., <math>a_n</math> be positive real numbers such that | For <math>n \ge 2</math> let <math>a_1</math>, <math>a_2</math>, ..., <math>a_n</math> be positive real numbers such that | ||
− | < | + | <center><math> (a_1+a_2+ ... +a_n)\left( {1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n} \right) \le \left(n+ {1 \over 2} \right) ^2 </math></center> |
− | Prove that max <math>(a_1, a_2, ... ,a_n) | + | Prove that max <math>(a_1, a_2, ... ,a_n) \le 4 \text{min}\, (a_1, a_2, ... , a_n)</math>. |
+ | == Solution == | ||
+ | Assume without loss of generality that <math>a_1 \le a_2 \le \cdots \le a_n</math>. Now we seek to prove that <math>a_1 \le 4a_n</math>. | ||
− | + | By the [[Cauchy-Schwarz Inequality]], <cmath>\begin{align*} | |
− | + | (a_n+a_2+ a_3 + ... +a_{n-1}+a_1)\left({1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n}\right) &\ge \left( \sqrt{a_n \over a_1} + n-2 + \sqrt{a_1 \over a_n} \right)^2 \\ | |
+ | (n+ {1 \over 2})^2 &\ge \left( \sqrt{a_n \over a_1} + n-2 + \sqrt{a_1 \over a_n} \right)^2 \\ | ||
+ | n+ {1 \over 2} &\ge n-2 + \sqrt{a_n \over a_1} + \sqrt{a_1 \over a_n} \\ | ||
+ | {5 \over 2} &\ge \sqrt{a_n \over a_1} + \sqrt{a_1 \over a_n} \\ | ||
+ | {17 \over 4} &\ge {a_n \over a_1} + {a_1 \over a_n} \\ | ||
+ | 0 &\ge (a_1 - 4a_n)\left(a_1 - {a_n \over 4}\right) \end{align*}</cmath> | ||
+ | Since <math>a_1 \ge a_n</math>, clearly <math>(a_1 - {a_n \over 4}) > 0</math>, dividing yields: | ||
+ | |||
+ | <cmath>0 \ge (a_1 - 4a_n) \Longrightarrow 4a_n \ge a_1</cmath> | ||
+ | |||
+ | as desired. | ||
+ | |||
+ | == See Also == | ||
+ | {{USAMO newbox|year=2009|num-b=3|num-a=5}} | ||
− | + | [[Category:Olympiad Algebra Problems]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 11:23, 18 July 2009
Problem
For let , , ..., be positive real numbers such that
Prove that max .
Solution
Assume without loss of generality that . Now we seek to prove that .
By the Cauchy-Schwarz Inequality, Since , clearly , dividing yields:
as desired.
See Also
2009 USAMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |