Difference between revisions of "2006 Cyprus Seniors Provincial/2nd grade/Problem 3"

m (Fixed latex)
m (Solution)
 
Line 3: Line 3:
 
<math>\frac{\text{A}^2}{\left( 1+\text{A}^2\right)^2} + \frac{\text{B}^2}{\left(1+\text{B}^2\right)^2} = \frac{1}{4}</math>.
 
<math>\frac{\text{A}^2}{\left( 1+\text{A}^2\right)^2} + \frac{\text{B}^2}{\left(1+\text{B}^2\right)^2} = \frac{1}{4}</math>.
  
 
== Solution ==
 
<cmath>\begin{align*}
 
\frac{\text{A}}{1+\text{A}^2} &= \frac{\frac{1-\cos\theta}{\sin\theta}}{1+\left(\frac{1- \cos\theta}{\sin\theta}\right)^2} \\
 
&= \frac{\frac{1-\cos\theta}{\sin\theta}}{\frac{\sin^2\theta+ \cos^2\theta-2\cos\theta+1}{\sin^2\theta}} \\
 
&= \frac{\frac{1-\cos\theta}{\sin\theta}}{\frac{2\left(1-\cos\theta\right)}{\sin^2\theta}} \\
 
&= \frac{\sin\theta}{2}
 
\end{align*}</cmath>
 
 
Similarly <math>\frac{\text{B}}{1+\text{B}^2} = \frac{\cos\theta}{2}</math>
 
 
So <cmath>\begin{align*}
 
\frac{\text{A}^2}{\left(1+\text{A}^2\right)^2} + \frac{\text{B}^2}{\left(1+\text{B}^2\right)^2} &= \frac{\sin^2\theta}{2^2} + \frac{\cos^2\theta}{2^2} \\
 
&= \frac{1}{4}
 
\end{align*}</cmath>
 
  
  

Latest revision as of 22:24, 21 October 2024