Difference between revisions of "1988 AJHSME Problems/Problem 18"

(New page: ==Problem== The average weight of <math>6</math> boys is <math>150</math> pounds and the average weight of <math>4</math> girls is <math>120</math> pounds. The average weight of the <mat...)
 
m
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
The average weight of <math>6</math> boys is <math>150</math> pounds and the average weight of <math>4</math> girls is <math>120</math> pounds.  The average weight of the <math>10</math> children is  
+
The [[average]] weight of <math>6</math> boys is <math>150</math> pounds and the average weight of <math>4</math> girls is <math>120</math> pounds.  The average weight of the <math>10</math> children is  
  
 
<math>\text{(A)}\ 135\text{ pounds} \qquad \text{(B)}\ 137\text{ pounds} \qquad \text{(C)}\ 138\text{ pounds} \qquad \text{(D)}\ 140\text{ pounds} \qquad \text{(E)}\ 141\text{ pounds}</math>
 
<math>\text{(A)}\ 135\text{ pounds} \qquad \text{(B)}\ 137\text{ pounds} \qquad \text{(C)}\ 138\text{ pounds} \qquad \text{(D)}\ 140\text{ pounds} \qquad \text{(E)}\ 141\text{ pounds}</math>
Line 14: Line 14:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
We want the average of the <math>10</math> children, which is <cmath>\frac{S_B+S_G}{10}</cmath>  From the first two equations, we can determine that <math>S_B=900</math> and <math>S_G=480</math>, so <math>S_B+S_G=1380</math>.  Therefore, the average we desire is <cmath>\frac{1380}{10}=138 \rightarrow \boxed{\text{C}}</cmath>
+
We want the average of the <math>10</math> children, which is <cmath>\frac{S_B+S_G}{10}</cmath>  From the first two [[equation|equations]], we can determine that <math>S_B=900</math> and <math>S_G=480</math>, so <math>S_B+S_G=1380</math>.  Therefore, the average we desire is <cmath>\frac{1380}{10}=138 \rightarrow \boxed{\text{C}}</cmath>
  
 
==See Also==
 
==See Also==
  
[[1988 AJHSME Problems]]
+
{{AJHSME box|year=1988|num-b=17|num-a=19}}
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 21:25, 3 June 2009

Problem

The average weight of $6$ boys is $150$ pounds and the average weight of $4$ girls is $120$ pounds. The average weight of the $10$ children is

$\text{(A)}\ 135\text{ pounds} \qquad \text{(B)}\ 137\text{ pounds} \qquad \text{(C)}\ 138\text{ pounds} \qquad \text{(D)}\ 140\text{ pounds} \qquad \text{(E)}\ 141\text{ pounds}$

Solution

Let the $6$ boys have total weight $S_B$ and let the $4$ girls have total weight $S_G$. We are given

\begin{align*} \frac{S_B}{6} &= 150 \\ \frac{S_G}{4} &= 120  \end{align*}

We want the average of the $10$ children, which is \[\frac{S_B+S_G}{10}\] From the first two equations, we can determine that $S_B=900$ and $S_G=480$, so $S_B+S_G=1380$. Therefore, the average we desire is \[\frac{1380}{10}=138 \rightarrow \boxed{\text{C}}\]

See Also

1988 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions