Difference between revisions of "Mock AIME 1 2005-2006/Problem 7"

(Problem)
(Solution)
Line 6: Line 6:
 
== Solution ==
 
== Solution ==
  
<math>2006</math> = <math>2*17*59</math>, so <math>f(2006^{6002})</math> has <math>6003^3</math> positive divisors. <math>6003</math> = <math>(3^2)(667)</math> so <math>6003^3</math> has <math>(6+1)(2+1)</math>, or <math>\boxed {021}</math> divisors.
+
<math>2006</math> = <math>2*17*59</math>, so <math>f(2006^{6002})</math> has <math>6003^3</math> positive divisors. <math>6003</math> = <math>(3^2)(667)</math> so <math>6003^3</math> has <math>(1+1)(2+1)</math>, or <math>\boxed {006}</math> divisors.

Revision as of 05:48, 28 August 2013

Problem

Let $f(n)$ denote the number of divisors of a positive integer $n$. Evaluate $f(f(2006^{6002}))$.

Solution

$2006$ = $2*17*59$, so $f(2006^{6002})$ has $6003^3$ positive divisors. $6003$ = $(3^2)(667)$ so $6003^3$ has $(1+1)(2+1)$, or $\boxed {006}$ divisors.