Difference between revisions of "Chebyshev theta function"

m (Estimates of the function: I didn't know if the slight refinement was due to Chebyshev)
Line 2: Line 2:
 
<math>\theta</math>, is a function of use in [[analytic number theory]].
 
<math>\theta</math>, is a function of use in [[analytic number theory]].
 
It is defined thus, for real <math>x</math>:
 
It is defined thus, for real <math>x</math>:
<cmath> \vartheta(x) = \sum_{p \le x} \log x , </cmath>
+
<cmath> \vartheta(x) = \sum_{p \le x} \log p , </cmath>
 
where the sum ranges over all [[prime number | primes]] less than
 
where the sum ranges over all [[prime number | primes]] less than
 
<math>x</math>.
 
<math>x</math>.
Line 28: Line 28:
 
<cmath> x \log 2 \ge \sum_{\lfloor n/2 \rfloor < p \le n} \log p
 
<cmath> x \log 2 \ge \sum_{\lfloor n/2 \rfloor < p \le n} \log p
 
= \vartheta{x} - \vartheta{\lfloor n/2 \rfloor}
 
= \vartheta{x} - \vartheta{\lfloor n/2 \rfloor}
\ge \vartheta{x} - 2\lfloor n/2 \rfloor \log 2 \ge \vartheta{x} - x \log 2x , </cmath>
+
\ge \vartheta{x} - 2\lfloor n/2 \rfloor \log 2 \ge \vartheta{x} - x \log 2 , </cmath>
 
by inductive hypothesis.  Therefore
 
by inductive hypothesis.  Therefore
 
<cmath> 2x \log 2 \ge \vartheta(x), </cmath>
 
<cmath> 2x \log 2 \ge \vartheta(x), </cmath>

Revision as of 18:56, 18 September 2012

Chebyshev's theta function, denoted $\vartheta$ or sometimes $\theta$, is a function of use in analytic number theory. It is defined thus, for real $x$: \[\vartheta(x) = \sum_{p \le x} \log p ,\] where the sum ranges over all primes less than $x$.

Estimates of the function

The function $\vartheta(x)$ is asymptotically equivalent to $\pi(x)$ (the prime counting function) and $x$. This result is the Prime Number Theorem, and all known proofs are rather involved.

However, we can obtain a simpler bound on $\vartheta(x)$.

Theorem (Chebyshev). If $x \ge 0$, then $\vartheta(x) \le 2x \log 2$.

Proof. We induct on $\lfloor x \rfloor$. For our base cases, we note that for $0 \le x < 2$, we have $\vartheta(x) = 0 \le 2x \log 2$.

Now suppose that $x \ge 2$. Let $n = \lfloor x \rfloor$. Then \[2^x \ge 2^n \ge \binom{n}{\lfloor n/2 \rfloor} \ge \prod_{\lfloor n/2 \rfloor < p \le n} p ,\] so \[x \log 2 \ge \sum_{\lfloor n/2 \rfloor < p \le n} \log p = \vartheta{x} - \vartheta{\lfloor n/2 \rfloor} \ge \vartheta{x} - 2\lfloor n/2 \rfloor \log 2 \ge \vartheta{x} - x \log 2 ,\] by inductive hypothesis. Therefore \[2x \log 2 \ge \vartheta(x),\] as desired. $\blacksquare$

See also