Difference between revisions of "1984 AIME Problems/Problem 1"

m (Solution)
(Solution)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
 +
 +
=== Solution 1 ===
 +
 
One approach to this problem is to apply the formula for the sum of an [[arithmetic series]] in order to find the value of <math>a_1</math>, then use that to calculate <math>a_2</math> and sum another arithmetic series to get our answer.
 
One approach to this problem is to apply the formula for the sum of an [[arithmetic series]] in order to find the value of <math>a_1</math>, then use that to calculate <math>a_2</math> and sum another arithmetic series to get our answer.
  
 
A somewhat quicker method is to do the following: for each <math>n \geq 1</math>, we have <math>a_{2n - 1} = a_{2n} - 1</math>.  We can substitute this into our given equation to get <math>(a_2 - 1) + a_2 + (a_4 - 1) + a_4 + \ldots + (a_{98} - 1) + a_{98} = 137</math>.  The left-hand side of this equation is simply <math>2(a_2 + a_4 + \ldots + a_{98}) - 49</math>, so our desired value is <math>\frac{137 + 49}{2} = \boxed{093}</math>.
 
A somewhat quicker method is to do the following: for each <math>n \geq 1</math>, we have <math>a_{2n - 1} = a_{2n} - 1</math>.  We can substitute this into our given equation to get <math>(a_2 - 1) + a_2 + (a_4 - 1) + a_4 + \ldots + (a_{98} - 1) + a_{98} = 137</math>.  The left-hand side of this equation is simply <math>2(a_2 + a_4 + \ldots + a_{98}) - 49</math>, so our desired value is <math>\frac{137 + 49}{2} = \boxed{093}</math>.
 +
 +
=== Solution 2 ===
 +
 +
If <math> a_1 </math> is the first term, then <math> a_1+a_2+a_3 + \cdots + a_{98} = 137 </math> can be rewritten as:
 +
 +
<math> 98a_1 + 1+2+3+ \cdots + 97 = 137 </math>
 +
<math> 98a_1 + \frac{97 \cdot 98}{2} = 137 </math>
 +
 +
Our desired value is <math> a_2+a_4+a_6+ \cdots + a_{98} </math> so this is:
 +
 +
<math> 49a_1 + 1+3+5+ \cdots + 97 </math>
 +
 +
which is <math> 49a_1+ 49^2 </math>. So, from the first equation, we know <math> 49a_1 = \frac{137}{2} - \frac{97 \cdot 49}{2} </math>. So, the final answer is:
 +
 +
<math> \frac{137 - 97(49) + 2(49)^2}{2} = \fbox{93} </math>.
  
 
== See also ==
 
== See also ==

Revision as of 10:44, 16 March 2011

Problem

Find the value of $\displaystyle a_2+a_4+a_6+a_8+\ldots+a_{98}$ if $\displaystyle a_1$, $\displaystyle a_2$, $\displaystyle a_3\ldots$ is an arithmetic progression with common difference 1, and $\displaystyle a_1+a_2+a_3+\ldots+a_{98}=137$.

Solution

Solution 1

One approach to this problem is to apply the formula for the sum of an arithmetic series in order to find the value of $a_1$, then use that to calculate $a_2$ and sum another arithmetic series to get our answer.

A somewhat quicker method is to do the following: for each $n \geq 1$, we have $a_{2n - 1} = a_{2n} - 1$. We can substitute this into our given equation to get $(a_2 - 1) + a_2 + (a_4 - 1) + a_4 + \ldots + (a_{98} - 1) + a_{98} = 137$. The left-hand side of this equation is simply $2(a_2 + a_4 + \ldots + a_{98}) - 49$, so our desired value is $\frac{137 + 49}{2} = \boxed{093}$.

Solution 2

If $a_1$ is the first term, then $a_1+a_2+a_3 + \cdots + a_{98} = 137$ can be rewritten as:

$98a_1 + 1+2+3+ \cdots + 97 = 137$ $98a_1 + \frac{97 \cdot 98}{2} = 137$

Our desired value is $a_2+a_4+a_6+ \cdots + a_{98}$ so this is:

$49a_1 + 1+3+5+ \cdots + 97$

which is $49a_1+ 49^2$. So, from the first equation, we know $49a_1 = \frac{137}{2} - \frac{97 \cdot 49}{2}$. So, the final answer is:

$\frac{137 - 97(49) + 2(49)^2}{2} = \fbox{93}$.

See also

1984 AIME (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions