Difference between revisions of "2009 AMC 10B Problems/Problem 20"

m (Solution: fixed)
m (Solution)
Line 39: Line 39:
 
By the Pythagorean Theorem, <math>AC=\sqrt5</math>. The Angle Bisector Theorem now yields that
 
By the Pythagorean Theorem, <math>AC=\sqrt5</math>. The Angle Bisector Theorem now yields that
  
<math>\frac{BC}{1}=\frac{2-BC}{\sqrt5}\\
+
<math>\frac{BD}{1}=\frac{2-BD}{\sqrt5}\\
BC\left(1+\frac{1}{\sqrt5}\right)=\frac{2}{\sqrt5}\\
+
BD\left(1+\frac{1}{\sqrt5}\right)=\frac{2}{\sqrt5}\\
BC(\sqrt5+1)=2\\
+
BD(\sqrt5+1)=2\\
BC=\frac{2}{\sqrt5+1}=\boxed{\frac{\sqrt5-1}{2}}.</math>
+
BD=\frac{2}{\sqrt5+1}=\boxed{\frac{\sqrt5-1}{2}}.</math>
  
 
== See Also ==
 
== See Also ==
  
 
{{AMC10 box|year=2009|ab=B|num-b=19|num-a=21}}
 
{{AMC10 box|year=2009|ab=B|num-b=19|num-a=21}}

Revision as of 17:14, 3 January 2010

Problem

Triangle $ABC$ has a right angle at $B$, $AB=1$, and $BC=2$. The bisector of $\angle BAC$ meets $\overline{BC}$ at $D$. What is $BD$?

[asy] unitsize(2cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4;  pair A=(0,1), B=(0,0), C=(2,0); pair D=extension(A,bisectorpoint(B,A,C),B,C); pair[] ds={A,B,C,D};  dot(ds); draw(A--B--C--A--D);  label("$1$",midpoint(A--B),W); label("$B$",B,SW); label("$D$",D,S); label("$C$",C,SE); label("$A$",A,NW); draw(rightanglemark(C,B,A,2)); [/asy]

$\text{(A) } \frac {\sqrt3 - 1}{2} \qquad \text{(B) } \frac {\sqrt5 - 1}{2} \qquad \text{(C) } \frac {\sqrt5 + 1}{2} \qquad \text{(D) } \frac {\sqrt6 + \sqrt2}{2} \qquad \text{(E) } 2\sqrt 3 - 1$

Solution

By the Pythagorean Theorem, $AC=\sqrt5$. The Angle Bisector Theorem now yields that

$\frac{BD}{1}=\frac{2-BD}{\sqrt5}\\ BD\left(1+\frac{1}{\sqrt5}\right)=\frac{2}{\sqrt5}\\ BD(\sqrt5+1)=2\\ BD=\frac{2}{\sqrt5+1}=\boxed{\frac{\sqrt5-1}{2}}.$

See Also

2009 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions