Difference between revisions of "2006 AMC 12B Problems/Problem 14"

m
(wrote solution)
Line 2: Line 2:
  
 
== Problem ==
 
== Problem ==
{{problem}}
+
Elmo makes <math>N</math> sandwiches for a fundraiser. For each sandwich he uses <math>B</math> globs of peanut butter at <math>4</math> cents per glob and <math>J</math> blobs of jam at <math>5</math> cents per glob. The cost of the peanut butter and jam to make all the sandwiches is <math>\</math><math> 2.53</math>. Assume that <math>B</math>, <math>J</math> and <math>N</math> are all positive integers with <math>N>1</math>. What is the cost of the jam Elmo uses to make the sandwiches?
  
 +
<math>
 +
\mathrm{(A)}\ 1.05
 +
\qquad
 +
\mathrm{(B)}\ 1.25
 +
\qquad
 +
\mathrm{(C)}\ 1.45
 +
\qquad
 +
\mathrm{(D)}\ 1.65
 +
\qquad
 +
\mathrm{(E)}\ 1.85
 +
</math>
 
== Solution ==
 
== Solution ==
 +
From the given, we know that
  
 +
<math>253=N(4B+5J)</math>
 +
(The numbers are in cents)
 +
 +
since <math>253=11\cdot23</math>, and since <math>N</math> is an integer, then <math>4B+5J=11</math> or <math>23</math>. It is easily deduced that <math>11</math> is impossible to make with <math>B</math> and <math>J</math> integers, so <math>N=11</math> and <math>4B+5J=23</math>. Then, it can be guessed and checked quite simply that if <math>B=2</math> and <math>J=3</math>, then <math>4B+5J=4(2)+5(3)=23</math>. The problem asks for the total cost of jam, or <math>N(5J)=11(15)=165</math> cents, or <math>1.65\implies\mathrm{(D)}</math>
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2006|ab=B|num-b=13|num-a=15}}
 
{{AMC12 box|year=2006|ab=B|num-b=13|num-a=15}}

Revision as of 15:02, 21 February 2009

This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.

Problem

Elmo makes $N$ sandwiches for a fundraiser. For each sandwich he uses $B$ globs of peanut butter at $4$ cents per glob and $J$ blobs of jam at $5$ cents per glob. The cost of the peanut butter and jam to make all the sandwiches is $$$2.53$. Assume that $B$, $J$ and $N$ are all positive integers with $N>1$. What is the cost of the jam Elmo uses to make the sandwiches?

$\mathrm{(A)}\ 1.05 \qquad \mathrm{(B)}\ 1.25 \qquad \mathrm{(C)}\ 1.45 \qquad \mathrm{(D)}\ 1.65 \qquad \mathrm{(E)}\ 1.85$

Solution

From the given, we know that

$253=N(4B+5J)$ (The numbers are in cents)

since $253=11\cdot23$, and since $N$ is an integer, then $4B+5J=11$ or $23$. It is easily deduced that $11$ is impossible to make with $B$ and $J$ integers, so $N=11$ and $4B+5J=23$. Then, it can be guessed and checked quite simply that if $B=2$ and $J=3$, then $4B+5J=4(2)+5(3)=23$. The problem asks for the total cost of jam, or $N(5J)=11(15)=165$ cents, or $1.65\implies\mathrm{(D)}$

See also

2006 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions