Difference between revisions of "2002 AMC 10B Problems/Problem 17"
(New page: 17. A regular octagon <math>ABCDEFGH</math> has sides of length two. Find the area of <math>\triangle ADG</math>. <math>\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \t...) |
m (added proper templates only) |
||
Line 1: | Line 1: | ||
− | + | == Problem == | |
+ | |||
+ | A regular octagon <math>ABCDEFGH</math> has sides of length two. Find the area of <math>\triangle ADG</math>. | ||
<math>\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \textbf{(C) } 4 + 3\sqrt2 \qquad \textbf{(D) } 3 + 4\sqrt2 \qquad \textbf{(E) } 8 + \sqrt2</math> | <math>\textbf{(A) } 4 + 2\sqrt2 \qquad \textbf{(B) } 6 + \sqrt2\qquad \textbf{(C) } 4 + 3\sqrt2 \qquad \textbf{(D) } 3 + 4\sqrt2 \qquad \textbf{(E) } 8 + \sqrt2</math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | {{solution}} | ||
+ | |||
+ | == See Also == | ||
+ | |||
+ | {{AMC10 box|year=2002|ab=B|num-b=16|num-a=18}} |
Revision as of 06:41, 2 February 2009
Problem
A regular octagon has sides of length two. Find the area of .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
2002 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |