Difference between revisions of "Aczel's Inequality"

Line 1: Line 1:
'''Aczel's Inequality''' states that if <math>a_1^2>a_2^2+\cdots +a_n^2</math> or <math>b_1^2>b_2^2+\cdots +b_n^2</math>, then
+
'''Aczél's Inequality''' states that if <math>a_1^2>a_2^2+\cdots +a_n^2</math> or <math>b_1^2>b_2^2+\cdots +b_n^2</math>, then
  
 
<center><math>(a_1b_1-a_2b_2-\cdots -a_nb_n)^2\geq (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2).</math></center>
 
<center><math>(a_1b_1-a_2b_2-\cdots -a_nb_n)^2\geq (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2).</math></center>
 +
  
 
== Proof ==
 
== Proof ==
Let us get the function <math>f(x)=(a_1 x - b_1)^2-\sum_{i=2}^n(a_i x - b_i)^2=</math> <math>(a_1^2-a_2^2-\cdots -a_n^2)x^2-2(a_1b_1-a_2b_2-\cdots -a_nb_n)x+(b_1^2-b_2^2-\cdots -b_n^2)</math>.
+
Consider the function <math>f(x)=(a_1 x - b_1)^2-\sum_{i=2}^n(a_i x - b_i)^2=</math> <math>(a_1^2-a_2^2-\cdots -a_n^2)x^2-2(a_1b_1-a_2b_2-\cdots -a_nb_n)x+(b_1^2-b_2^2-\cdots -b_n^2)</math>.
 +
 
 +
We have <math>f\left( \frac{b_1}{a_1} \right)=-\sum_{i=2}^n\left(a_i \frac{b_1}{a_1} - b_i\right)^2\leq 0</math>, and from <math>a_1^2>a_2^2+\cdots +a_n^2</math> we get <math>\lim_{x\rightarrow \infty}f(x)\rightarrow \infty</math>. Therefore, <math>f(x)</math> must have at least one root, <math>\Leftrightarrow </math> <math>D=(a_1b_1-a_2b_2-\cdots -a_nb_n)^2- (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2)\geq 0</math>.
 +
 
 +
 
 +
==General Form==
 +
Let <math>p_1,\dots,p_m \ge1 </math> such that <math>\sum_{i=1}^m\frac1{p_i} = 1</math> and let <center><math>(a_{11}, \dots,a_{1n}),</math></center><cmath>\vdots</cmath><center><math>(a_{m1}, \dots , a_{mn}) </math></center>
 +
be <math>m</math> sequences of positive real numbers such that <math>a_{i1}^{ p_i} - a_{i2}^{ p_i} - \dots - a_{in}^{ p_i} > 0</math> for <math>i=1,\dots,m </math>. Then 
 +
 
 +
<center><math> \prod_{i=1}^m
 +
(a_{i1}^{ p_i} - a_{i2}^{ p_i} - \dots - a_{in}^{ p_i})^\frac 1{ p_i} \le \prod_{i=1}^m a_{i1} - \prod_{i=1}^m a_{i2} -\dots- \prod_{i=1}^m a_{in} </math></center>
 +
with equality if and only if all the sequences are proportional.
 +
 
  
<math>f\left( \frac{b_1}{a_1} \right)=-\sum_{i=2}^n\left(a_i \frac{b_1}{a_1} - b_i\right)^2\leq 0</math> and since <math>a_1^2>a_2^2+\cdots +a_n^2</math>, then <math>\lim_{x\rightarrow \infty}f(x)\rightarrow \infty</math>. Therefore, <math>f(x)</math> has to have at least one root, <math>\Leftrightarrow </math> <math>D=(a_1b_1-a_2b_2-\cdots -a_nb_n)^2- (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2)\geq 0</math>.
+
== References ==
  
 +
*Mascioni, Vania, [http://www.maths.soton.ac.uk/EMIS/journals/JIPAM/v3n5/045_02_www.pdf A note on Aczél-type inequalities], JIPAM volume 3 (2002), issue 5, article 69.
 +
* Popoviciu, T., Sur quelques inégalités, Gaz. Mat. Fiz. Ser. A, 11 (64) (1959) 451–461
 
== See also ==
 
== See also ==
 
* [[Inequalities]]
 
* [[Inequalities]]

Revision as of 12:53, 11 March 2011

Aczél's Inequality states that if $a_1^2>a_2^2+\cdots +a_n^2$ or $b_1^2>b_2^2+\cdots +b_n^2$, then

$(a_1b_1-a_2b_2-\cdots -a_nb_n)^2\geq (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2).$


Proof

Consider the function $f(x)=(a_1 x - b_1)^2-\sum_{i=2}^n(a_i x - b_i)^2=$ $(a_1^2-a_2^2-\cdots -a_n^2)x^2-2(a_1b_1-a_2b_2-\cdots -a_nb_n)x+(b_1^2-b_2^2-\cdots -b_n^2)$.

We have $f\left( \frac{b_1}{a_1} \right)=-\sum_{i=2}^n\left(a_i \frac{b_1}{a_1} - b_i\right)^2\leq 0$, and from $a_1^2>a_2^2+\cdots +a_n^2$ we get $\lim_{x\rightarrow \infty}f(x)\rightarrow \infty$. Therefore, $f(x)$ must have at least one root, $\Leftrightarrow$ $D=(a_1b_1-a_2b_2-\cdots -a_nb_n)^2- (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2)\geq 0$.


General Form

Let $p_1,\dots,p_m \ge1$ such that $\sum_{i=1}^m\frac1{p_i} = 1$ and let

$(a_{11}, \dots,a_{1n}),$

\[\vdots\]

$(a_{m1}, \dots , a_{mn})$

be $m$ sequences of positive real numbers such that $a_{i1}^{ p_i} - a_{i2}^{ p_i} - \dots - a_{in}^{ p_i} > 0$ for $i=1,\dots,m$. Then

$\prod_{i=1}^m  (a_{i1}^{ p_i} - a_{i2}^{ p_i} - \dots - a_{in}^{ p_i})^\frac 1{ p_i} \le \prod_{i=1}^m a_{i1} - \prod_{i=1}^m a_{i2} -\dots- \prod_{i=1}^m a_{in}$

with equality if and only if all the sequences are proportional.


References

  • Mascioni, Vania, A note on Aczél-type inequalities, JIPAM volume 3 (2002), issue 5, article 69.
  • Popoviciu, T., Sur quelques inégalités, Gaz. Mat. Fiz. Ser. A, 11 (64) (1959) 451–461

See also

This article is a stub. Help us out by expanding it.