|
|
Line 1: |
Line 1: |
− | ==Problem==
| + | #REDIRECT [[2000 AMC 12 Problems/Problem 6]] |
− | | |
− | Two different prime numbers between <math>4</math> and <math>18</math> are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?
| |
− | | |
− | <math>\mathrm{(A)}\ 21 \qquad\mathrm{(B)}\ 60 \qquad\mathrm{(C)}\ 119 \qquad\mathrm{(D)}\ 180 \qquad\mathrm{(E)}\ 231</math>
| |
− | | |
− | ==Solution==
| |
− | | |
− | Two prime numbers between <math>4</math> and <math>18</math> are both odd.
| |
− | | |
− | <math>(\text{odd}\cdot\text{odd})-(\text{odd}+\text{odd})=\text{odd}-\text{even}=\text{odd}</math>
| |
− | | |
− | Thus, we can discard the even choices.
| |
− | | |
− | <math>ab-(a+b)=ab-a-b=(a-1)(b-1)-1</math>
| |
− | | |
− | Both <math>a-1</math> and <math>b-1</math> are even, so one more than <math>ab-a-b</math> is a multiple of four.
| |
− | | |
− | <math>119</math> is the only possible choice.
| |
− | | |
− | <math>11,13</math> satisfy this, <math>11\cdot 13-11-13=143-24=119</math>.
| |
− | | |
− | <math>\boxed{\text{C}}</math>
| |
− | | |
− | ==See Also==
| |
− | | |
− | {{AMC10 box|year=2000|num-b=10|num-a=12}}
| |