Difference between revisions of "2000 AMC 10 Problems/Problem 15"

m
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
 +
Two non-zero real numbers, <math>a</math> and <math>b</math>, satisfy <math>ab=a-b</math>.  Find a possible value of <math>\frac{a}{b}+\frac{b}{a}-ab</math>.
 +
 +
<math>\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -\frac{1}{2} \qquad\mathrm{(C)}\ \frac{1}{3} \qquad\mathrm{(D)}\ \frac{1}{2} \qquad\mathrm{(E)}\ 2</math>
  
 
==Solution==
 
==Solution==

Revision as of 22:15, 10 January 2009

Problem

Two non-zero real numbers, $a$ and $b$, satisfy $ab=a-b$. Find a possible value of $\frac{a}{b}+\frac{b}{a}-ab$.

$\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -\frac{1}{2} \qquad\mathrm{(C)}\ \frac{1}{3} \qquad\mathrm{(D)}\ \frac{1}{2} \qquad\mathrm{(E)}\ 2$

Solution

$ab=a-b$

$\frac{a}{b}+\frac{b}{a}-ab=\frac{a^2+b^2}{ab}-ab=\frac{-a^2b^2+a^2+b^2}{ab}$

$\frac{-a^2+2ab-b^2+a^2+b^2}{ab}=2$.

E.

See Also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions