Difference between revisions of "User:Temperal/The Problem Solver's Resource3"

m (fixed typo)
(rmv)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
<br /><br />
+
{{User:Temperal/testtemplate|page 3}}
{| style='background:lime;border-width: 5px;border-color: limegreen;border-style: outset;opacity: 0.8;width:840px;height:300px;position:relative;top:10px;'
 
|+ <span style="background:aqua; border:1px solid black; opacity: 0.6;font-size:30px;position:relative;bottom:8px;border-width: 5px;border-color:blue;border-style: groove;position:absolute;top:50px;right:155px;width:820px;height:40px;padding:5px;">The Problem Solver's Resource</span>
 
|-
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 3}}
 
 
==<span style="font-size:20px; color: blue;">Summations and Products</span>==
 
==<span style="font-size:20px; color: blue;">Summations and Products</span>==
 
===Definitions===
 
===Definitions===
Line 36: Line 32:
  
 
[[User:Temperal/The Problem Solver's Resource2|Back to page 2]] | [[User:Temperal/The Problem Solver's Resource4|Continue to page 4]]
 
[[User:Temperal/The Problem Solver's Resource2|Back to page 2]] | [[User:Temperal/The Problem Solver's Resource4|Continue to page 4]]
|} <br /><br />
 

Revision as of 18:16, 10 January 2009


Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 3.

Summations and Products

Definitions

  • Summations: $\sum_{i=a}^{b}c_i=c_a+c_{a+1}+c_{a+2}...+c_{b-1}+c_{b}$
  • Products: $\prod_{i=a}^{b}c_i=c_a\cdot c_{a+1}\cdot c_{a+2}...\cdot c_{b-1}\cdot c_{b}$

Rules of Summation

$\sum_{i=a}^{b}f(i)+g(i)=\sum_{i=a}^{b}f(i)+\sum_{i=a}^{b}g(i)$

$\sum_{i=a}^{b}c\cdot f(i)=c\cdot \sum_{i=a}^{b}f(i)$

$\sum_{i=1}^{n} i= \frac{n(n+1)}{2}$, and in general $\sum_{i=a}^{b} i= \frac{(b-a+1)(a+b)}{2}$

$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

$\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2 = \left(\frac{n(n+1)}{2}\right)^2$

$\sum_{i=1}^n i^4=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$

$\sum_{i=1}^n i^5=\frac{n^2(n+1)^2(2n^2+2n-1)}{12}$


Rules of Products

$\prod_{i=a}^{b}x=x^{(b-a+1)}$

$\prod_{i=a}^{b}x\cdot y=x^{(b-a+1)}y^{(b-a+1)}$


Back to page 2 | Continue to page 4