Difference between revisions of "1975 USAMO Problems/Problem 4"

(New page: ==Problem== Two given circles intersect in two points <math>P</math> and <math>Q</math>. Show how to construct a segment <math>AB</math> passing through <math>P</math> and terminating on t...)
 
Line 14: Line 14:
 
==Solution==
 
==Solution==
 
{{solution}}
 
{{solution}}
 +
http://www.mathlinks.ro/Wiki/index.php/Category:Olympiad_Combinatorics_Problems
  
 +
by Vo Duc Dien
 
==See also==
 
==See also==
  

Revision as of 16:12, 12 January 2010

Problem

Two given circles intersect in two points $P$ and $Q$. Show how to construct a segment $AB$ passing through $P$ and terminating on the two circles such that $AP\cdot PB$ is a maximum.

[asy] size(150); defaultpen(fontsize(7)); pair A=(0,0), B=(10,0), P=(4,0), Q=(3.7,-2.5); draw(A--B); draw(circumcircle(A,P,Q)); draw(circumcircle(B,P,Q)); label("A",A,(-1,1));label("P",P,(0,1.5));label("B",B,(1,1));label("Q",Q,(-0.5,-1.5)); [/asy]

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it. http://www.mathlinks.ro/Wiki/index.php/Category:Olympiad_Combinatorics_Problems

by Vo Duc Dien

See also

1975 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5
All USAMO Problems and Solutions