Difference between revisions of "2002 AMC 10A Problems/Problem 25"
m (→Solution: box) |
m (whoops) |
||
Line 31: | Line 31: | ||
So the sides of <math>\triangle CDE</math> are <math>15,36,39</math>, which we recognize to be a <math>5 - 12 - 13</math> [[right triangle]]. Therefore (we could simplify some of the calculation using that the ratio of areas is equal to the ratio of the sides squared), | So the sides of <math>\triangle CDE</math> are <math>15,36,39</math>, which we recognize to be a <math>5 - 12 - 13</math> [[right triangle]]. Therefore (we could simplify some of the calculation using that the ratio of areas is equal to the ratio of the sides squared), | ||
<cmath> | <cmath> | ||
− | [ABCD] = [ABE] - [CDE] = \frac {1}{2}\cdot 20 \cdot 48 - \frac {1}{2} \cdot 15 \cdot 36 = \boxed{\mathrm{(C)}\ | + | [ABCD] = [ABE] - [CDE] = \frac {1}{2}\cdot 20 \cdot 48 - \frac {1}{2} \cdot 15 \cdot 36 = \boxed{\mathrm{(C)}\ 210}</cmath>. |
== See also == | == See also == |
Revision as of 17:19, 26 December 2008
Problem
In trapezoid with bases and , we have , , , and . The area of is
Solution
It shouldn't be hard to use trigonometry to bash this and find the height, but there is a much easier way. Extend and to meet at point :
Since we have , with the ratio of proportionality being . Thus So the sides of are , which we recognize to be a right triangle. Therefore (we could simplify some of the calculation using that the ratio of areas is equal to the ratio of the sides squared), .
See also
2002 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |