Difference between revisions of "1992 USAMO Problems/Problem 3"

(solution)
(Removing all content from page)
Line 1: Line 1:
==Problem==
 
Chords <math>AA'</math>, <math>BB'</math>, and <math>CC'</math> of a sphere meet at an interior point <math>P</math> but are not contained in the same plane.  The sphere through <math>A</math>, <math>B</math>, <math>C</math>, and <math>P</math> is tangent to the sphere through <math>A'</math>, <math>B'</math>, <math>C'</math>, and <math>P</math>.  Prove that <math>AA'=BB'=CC'</math>.
 
  
==Solution==
 
Consider the plane through <math>A,A',B,B'</math>.  This plane, of course, also contains <math>P</math>. We can easily find the <math>\triangle APB</math> is isosceles because the base angles are equal. Thus, <math>AP=BP</math>. Similarly, <math>A'P=B'P</math>. Thus, <math>AA'=BB'</math>. By symmetry, <math>BB'=CC'</math> and <math>CC'=AA'</math>, and hence <math>AA'=BB'=CC'</math> as desired.
 
 
<math>\mathbb{QED.}</math>
 

Revision as of 17:34, 5 April 2009