Difference between revisions of "Aczel's Inequality"

(New page: '''Aczel's Inequality''' states that if <math>a_1^2>a_2^2+\cdots +a_n^2</math>, then <center><math>(a_1b_1-a_2b_2-\cdots -a_nb_n)^2\geq (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n...)
 
Line 1: Line 1:
'''Aczel's Inequality''' states that if <math>a_1^2>a_2^2+\cdots +a_n^2</math>, then
+
'''Aczel's Inequality''' states that if <math>a_1^2>a_2^2+\cdots +a_n^2</math> and <math>b_1^2>b_2^2+\cdots +b_n^2</math>, then
  
 
<center><math>(a_1b_1-a_2b_2-\cdots -a_nb_n)^2\geq (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2).</math></center>
 
<center><math>(a_1b_1-a_2b_2-\cdots -a_nb_n)^2\geq (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2).</math></center>
  
 
== Proof ==
 
== Proof ==
{{incomplete|proof}}
+
Let us get the function <math>f(x)=(a_1 x - b_1)^2-\sum_{i=2}^n(a_i x - b_i)^2=</math> <math>(a_1^2-a_2^2-\cdots -a_n^2)x^2-2(a_1b_1-a_2b_2-\cdots -a_nb_n)x+(b_1^2-b_2^2-\cdots -b_n^2)</math>.
 +
 
 +
<math>f\left( \frac{b_1}{a_1} \right)=-\sum_{i=2}^n\left(a_i \frac{b_1}{a_1} - b_i\right)^2\leq 0</math> and since <math>a_1^2>a_2^2+\cdots +a_n^2</math>, then <math>\lim_{x\rightarrow \infty}f(x)\rightarrow \infty</math>. Therefore, <math>f(x)</math> has to have at least one root, <math>\Leftrightarrow </math> <math>D=(a_1b_1-a_2b_2-\cdots -a_nb_n)^2- (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2)\geq 0</math>.
  
 
== See also ==
 
== See also ==

Revision as of 12:16, 30 January 2009

Aczel's Inequality states that if $a_1^2>a_2^2+\cdots +a_n^2$ and $b_1^2>b_2^2+\cdots +b_n^2$, then

$(a_1b_1-a_2b_2-\cdots -a_nb_n)^2\geq (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2).$

Proof

Let us get the function $f(x)=(a_1 x - b_1)^2-\sum_{i=2}^n(a_i x - b_i)^2=$ $(a_1^2-a_2^2-\cdots -a_n^2)x^2-2(a_1b_1-a_2b_2-\cdots -a_nb_n)x+(b_1^2-b_2^2-\cdots -b_n^2)$.

$f\left( \frac{b_1}{a_1} \right)=-\sum_{i=2}^n\left(a_i \frac{b_1}{a_1} - b_i\right)^2\leq 0$ and since $a_1^2>a_2^2+\cdots +a_n^2$, then $\lim_{x\rightarrow \infty}f(x)\rightarrow \infty$. Therefore, $f(x)$ has to have at least one root, $\Leftrightarrow$ $D=(a_1b_1-a_2b_2-\cdots -a_nb_n)^2- (a_1^2-a_2^2-\cdots -a_n^2)(b_1^2-b_2^2-\cdots -b_n^2)\geq 0$.

See also

This article is a stub. Help us out by expanding it.