Difference between revisions of "Karamata's Inequality"

m
Line 1: Line 1:
'''Karamata's Inequality''' states that if <math>(x_i)</math> [[Majorization|majores]] <math>(y_i)</math> and <math>f</math> is a [[convex function]], then
+
'''Karamata's Inequality''' states that if <math>(x_i)</math> [[Majorization|majorizes]] <math>(y_i)</math> and <math>f</math> is a [[convex function]], then
  
 
<center><math>\sum_{i=1}^{n}f(x_i)\geq \sum_{i=1}^{n}f(y_i)</math></center>
 
<center><math>\sum_{i=1}^{n}f(x_i)\geq \sum_{i=1}^{n}f(y_i)</math></center>

Revision as of 20:40, 2 June 2012

Karamata's Inequality states that if $(x_i)$ majorizes $(y_i)$ and $f$ is a convex function, then

$\sum_{i=1}^{n}f(x_i)\geq \sum_{i=1}^{n}f(y_i)$

Proof

Template:Incomplete

See also