Difference between revisions of "2000 AIME II Problems/Problem 12"
(minor tex) |
Fuzzy growl (talk | contribs) m (→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | The points <math>A</math>, <math>B</math> and <math>C</math> lie on the surface of a [[sphere]] with center <math>O</math> and radius <math>20</math>. It is given that <math>AB=13</math>, <math>BC=14</math>, <math>CA=15</math>, and that the distance from <math>O</math> to | + | The points <math>A</math>, <math>B</math> and <math>C</math> lie on the surface of a [[sphere]] with center <math>O</math> and radius <math>20</math>. It is given that <math>AB=13</math>, <math>BC=14</math>, <math>CA=15</math>, and that the distance from <math>O</math> to <math>\triangle ABC</math> is <math>\frac{m\sqrt{n}}k</math>, where <math>m</math>, <math>n</math>, and <math>k</math> are positive integers, <math>m</math> and <math>k</math> are relatively prime, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n+k</math>. |
== Solution == | == Solution == |
Revision as of 22:20, 10 March 2010
Problem
The points , and lie on the surface of a sphere with center and radius . It is given that , , , and that the distance from to is , where , , and are positive integers, and are relatively prime, and is not divisible by the square of any prime. Find .
Solution
Let be the foot of the perpendicular from to the plane of . By the Pythagorean Theorem on triangles , and we get:
It follows that , so is the circumcenter of .
By Heron's Formula the area of is (alternatively, a triangle may be split into and right triangles):
From , we know that the circumradius of is:
Thus by the Pythagorean Theorem again,
So the final answer is .
See also
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |