Difference between revisions of "Carnot's Theorem"
(New page: '''Carnot's Theorem''' states that in a triangle <math>ABC</math> with <math>A_1\in BC</math>, <math>B_1\in AC</math>, and <math>C_1\in </math>AB<math>, perpendiculars to the sides...) |
|||
Line 1: | Line 1: | ||
− | '''Carnot's Theorem''' states that in a [[triangle]] <math>ABC</math> with <math>A_1\in BC</math>, <math>B_1\in AC</math>, and <math>C_1\in </ | + | '''Carnot's Theorem''' states that in a [[triangle]] <math>ABC</math> with <math>A_1\in BC</math>, <math>B_1\in AC</math>, and <math>C_1\in AB</math>, [[perpendicular]]s to the sides <math>BC, </math>AC<math>, and </math>AB<math> at </math>A_1<math>, </math>B_1<math>, and </math>C_1<math> are [[concurrent]] [[if and only if]] </math>A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2<math>. |
==Proof== | ==Proof== | ||
Line 6: | Line 6: | ||
==Problems== | ==Problems== | ||
===Olympiad=== | ===Olympiad=== | ||
− | <math>\triangle ABC< | + | </math>\triangle ABC<math> is a triangle. Take points </math>D, E, F<math> on the perpendicular bisectors of </math>BC, CA, AB<math> respectively. Show that the lines through </math>A, B, C<math> perpendicular to </math>EF, FD, DE$ respectively are concurrent. ([[1997 USAMO Problems/Problem 2|Source]]) |
==See also== | ==See also== |
Revision as of 07:03, 27 August 2008
Carnot's Theorem states that in a triangle with , , and , perpendiculars to the sides ACABA_1B_1C_1A_1B^2+C_1A^2+B_1C^2=A_1C^2+C_1B^2+B_1A^2$.
==Proof== {{incomplete|proof}}
==Problems== ===Olympiad===$ (Error compiling LaTeX. Unknown error_msg)\triangle ABCD, E, FBC, CA, ABA, B, CEF, FD, DE$ respectively are concurrent. (Source)