Difference between revisions of "1997 PMWC Problems/Problem T1"
(→See also) |
|||
Line 7: | Line 7: | ||
Triangles UWQ, PUY, UWX, and UXY are all right triangles with side lengths 1, <math>\sqrt{3}</math>, and 2. Thus <math>[UWXY]=\sqrt{3}</math> and <math>[PQR]=\frac{9}{4}\sqrt{3}</math>. <math>\frac{[UWXY]}{[PQR]}=\frac{1}{\frac{9}{4}}=\boxed{\frac{4}{9}}</math> | Triangles UWQ, PUY, UWX, and UXY are all right triangles with side lengths 1, <math>\sqrt{3}</math>, and 2. Thus <math>[UWXY]=\sqrt{3}</math> and <math>[PQR]=\frac{9}{4}\sqrt{3}</math>. <math>\frac{[UWXY]}{[PQR]}=\frac{1}{\frac{9}{4}}=\boxed{\frac{4}{9}}</math> | ||
− | ==See | + | ==See Also== |
{{PMWC box|year=1997|num-b=I15|num-a=T2}} | {{PMWC box|year=1997|num-b=I15|num-a=T2}} | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] |
Revision as of 15:06, 15 May 2012
Problem
Let be an equilateral triangle with sides of length three units. , , , , , and divide the sides into lengths of one unit. Find the ratio of the area of the shaded quadrilateral to the area of the triangle .
Solution
Triangles UWQ, PUY, UWX, and UXY are all right triangles with side lengths 1, , and 2. Thus and .
See Also
1997 PMWC (Problems) | ||
Preceded by Problem I15 |
Followed by Problem T2 | |
I: 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 T: 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 |