Difference between revisions of "2003 USAMO Problems/Problem 5"
(New page: == Problem == Let <math>a</math>, <math>b</math>, <math>c</math> be positive real numbers. Prove that <center><math>\dfrac{(2a + b + c)^2}{2a^2 + (b + c)^2} + \dfrac{(2b + c + a)^2}{2b^2 ...) |
m (→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | |||
Let <math>a</math>, <math>b</math>, <math>c</math> be positive real numbers. Prove that | Let <math>a</math>, <math>b</math>, <math>c</math> be positive real numbers. Prove that | ||
<center><math>\dfrac{(2a + b + c)^2}{2a^2 + (b + c)^2} + \dfrac{(2b + c + a)^2}{2b^2 + (c + a)^2} + \dfrac{(2c + a + b)^2}{2c^2 + (a + b)^2} \le 8.</math></center> | <center><math>\dfrac{(2a + b + c)^2}{2a^2 + (b + c)^2} + \dfrac{(2b + c + a)^2}{2b^2 + (c + a)^2} + \dfrac{(2c + a + b)^2}{2c^2 + (a + b)^2} \le 8.</math></center> |
Revision as of 09:52, 8 October 2008
Problem
Let , , be positive real numbers. Prove that
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.