Difference between revisions of "2003 USAMO Problems/Problem 4"

(New page: == Problem == Let <math>ABC</math> be a triangle. A circle passing through <math>A</math> and <math>B</math> intersects segments <math>AC</math> and <math>BC</math> at <math>D</math> and ...)
 
Line 4: Line 4:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
by April
 +
 
 +
Take <math>G\in BD: \,FG\parallel CD</math>. We have:
 +
 
 +
<math>MF = MC\Longleftrightarrow \textrm{the quadrilateral}\; CDFG\; \textrm{is a parallelogram} \\
 +
\Longleftrightarrow FD\parallel CG\Longleftrightarrow\angle FDA = \angle GCD\Longleftrightarrow\angle FDA + \angle CGF = 180^\circ \\
 +
\Longleftrightarrow \angle ABE + \angle CGF = 180^\circ\Longleftrightarrow\textrm{the quadrilateral}\;CBGF\;\textrm{is cyclic} \\
 +
\Longleftrightarrow\angle CBM = \angle CBG = \angle CFG = \angle DCF = \angle DCM \\
 +
\Longleftrightarrow\triangle BCM\sim\triangle CDM\Longleftrightarrow MB\cdot MD = MC^{2}</math>
  
 
== Resources ==
 
== Resources ==

Revision as of 18:54, 18 December 2008

Problem

Let $ABC$ be a triangle. A circle passing through $A$ and $B$ intersects segments $AC$ and $BC$ at $D$ and $E$, respectively. Lines $AB$ and $DE$ intersect at $F$, while lines $BD$ and $CF$ intersect at $M$. Prove that $MF = MC$ if and only if $MB\cdot MD = MC^2$.

Solution

by April

Take $G\in BD: \,FG\parallel CD$. We have:

$MF = MC\Longleftrightarrow \textrm{the quadrilateral}\; CDFG\; \textrm{is a parallelogram} \\ \Longleftrightarrow FD\parallel CG\Longleftrightarrow\angle FDA = \angle GCD\Longleftrightarrow\angle FDA + \angle CGF = 180^\circ \\ \Longleftrightarrow \angle ABE + \angle CGF = 180^\circ\Longleftrightarrow\textrm{the quadrilateral}\;CBGF\;\textrm{is cyclic} \\ \Longleftrightarrow\angle CBM = \angle CBG = \angle CFG = \angle DCF = \angle DCM \\ \Longleftrightarrow\triangle BCM\sim\triangle CDM\Longleftrightarrow MB\cdot MD = MC^{2}$

Resources