Difference between revisions of "2000 AIME I Problems/Problem 12"
m (minor) |
|||
Line 27: | Line 27: | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 18:49, 4 July 2013
Problem
Given a function for which holds for all real what is the largest number of different values that can appear in the list
Solution
\begin{align*}f(2518 - x) = f(x) &= f(3214 - (2158 - x)) &= f(1056 + x)\\ f(398 - x) = f(x) &= f(2158 - (398 - x)) &= f(1760 + x)\end{eqnarray*} (Error compiling LaTeX. Unknown error_msg)
Since we can conclude that (by the Euclidean algorithm)
So we need only to consider one period , which can have at most distinct values which determine the value of at all other integers.
But we also know that , so the values and are repeated. This gives a total of
distinct values.
To show that it is possible to have distinct, we try to find a function which fulfills the given conditions. A bit of trial and error would lead to the cosine function: (in degrees).
See also
2000 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.