Difference between revisions of "2007 AIME I Problems/Problem 13"

(replace with 3D asymptotes)
Line 40: Line 40:
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]
 +
{{MAA Notice}}

Revision as of 19:11, 4 July 2013

Problem

A square pyramid with base $ABCD$ and vertex $E$ has eight edges of length $4$. A plane passes through the midpoints of $AE$, $BC$, and $CD$. The plane's intersection with the pyramid has an area that can be expressed as $\sqrt{p}$. Find $p$.

          
import three; pointpen = black; pathpen = black+linewidth(0.7); currentprojection = perspective(2.5,-12,4);
triple A=(-2,2,0), B=(2,2,0), C=(2,-2,0), D=(-2,-2,0), E=(0,0,2*2^.5), P=(A+E)/2, Q=(B+C)/2, R=(C+D)/2;
D(A--B--C--D--A--E--B--E--C--E--D); MP("A",A); MP("B",B,(1,0,0)); MP("C",C); MP("D",D); MP("E",E,N); D(MP("P",P)); D(MP("Q",Q,(1,0,0))); D(MP("R",R));
 (Error making remote request. Unknown error_msg)

Solution

Solution 1

Note first that the intersection is a pentagon.

Use 3D analytical geometry, setting the origin as the center of the square base and the pyramid’s points oriented as shown above. $A(-2,2,0),\ B(2,2,0),\ C(2,-2,0),\ D(-2,-2,0),\ E(0,0,2\sqrt{2})$. Using the coordinates of the three points of intersection ($(-1,1,\sqrt{2}),\ (2,0,0),\ (0,-2,0)$), it is possible to determine the equation of the plane. The equation of a plane resembles $ax + by + cz = d$, and using the points we find that $2a = d \Longrightarrow d = \frac{a}{2}$, $-2b = d \Longrightarrow d = \frac{-b}{2}$, and $-a + b + \sqrt{2}c = d \Longrightarrow -\frac{d}{2} - \frac{d}{2} + \sqrt{2}c = d \Longrightarrow c = d\sqrt{2}$. It is then $x - y + 2\sqrt{2}z = 2$.

import three; pointpen = black; pathpen = black+linewidth(0.7); currentprojection = perspective(2.5,-12,4);
triple A=(-2,2,0), B=(2,2,0), C=(2,-2,0), D=(-2,-2,0), E=(0,0,2*2^.5), P=(A+E)/2, Q=(B+C)/2, R=(C+D)/2, Y=(-3/2,-3/2,2^.5/2),X=(3/2,3/2,2^.5/2);
D(A--B--C--D--A--E--B--E--C--E--D); MP("A",A); MP("B",B,(1,0,0)); MP("C",C); MP("D",D); MP("E",E,N); D(MP("P",P)); D(MP("Q",Q,(1,0,0))); D(MP("R",R));  D(MP("Y",Y,NW));  D(MP("X",X,NE)); D(P--X--Q--R--Y--cycle,linetype("6 6")+linewidth(0.7)); 
 (Error making remote request. Unknown error_msg)
     [asy]pointpen = black; pathpen = black+linewidth(0.7);  pair P = (0, 2.5^.5), X = (3/2^.5,0), Y = (-3/2^.5,0), Q = (2^.5,-2.5^.5), R = (-2^.5,-2.5^.5);  D(MP("P",P,N)--MP("X",X,NE)--MP("Q",Q)--MP("R",R)--MP("Y",Y,NW)--cycle); D(X--Y,linetype("6 6") + linewidth(0.7)); D(P--(0,-P.y),linetype("6 6") + linewidth(0.7)); MP("3\sqrt{2}",(X+Y)/2); MP("2\sqrt{2}",(Q+R)/2); MP("\sqrt{\frac{5}{2}}",(0,-P.y/2),E); MP("\sqrt{\frac{5}{2}}",(0,2*P.y/5),E);  [/asy]

Write the equation of the lines and substitute to find that the other two points of intersection on $\overline{BE}$, $\overline{DE}$ are $\left(\frac{\pm 3}{2},\frac{\pm 3}{2},\frac{\sqrt{2}}{2}\right)$. To find the area of the pentagon, break it up into pieces (an isosceles triangle on the top, an isosceles trapezoid on the bottom). Using the distance formula ($\sqrt{a^2 + b^2 + c^2}$), it is possible to find that the area of the triangle is $\frac{1}{2}bh \Longrightarrow \frac{1}{2} 3\sqrt{2} \cdot \sqrt{\frac 52} = \frac{3\sqrt{5}}{2}$. The trapezoid has area $\frac{1}{2}h(b_1 + b_2) \Longrightarrow \frac 12\sqrt{\frac 52}\left(2\sqrt{2} + 3\sqrt{2}\right) = \frac{5\sqrt{5}}{2}$. In total, the area is $4\sqrt{5} = \sqrt{80}$, and the solution is $\boxed{080}$.

Solution 2

Use the same coordinate system as above, and let the plane determined by $\triangle PQR$ intersect $\overline{BE}$ at $X$ and $\overline{DE}$ at $Y$. Then the line $\overline{XY}$ is the intersection of the planes determined by $\triangle PQR$ and $\triangle BDE$.

Note that the plane determined by $\triangle BDE$ has the equation $x=y$, and $\overline{PQ}$ can be described by $x=2(1-t)-t,\ y=t,\ z=t\sqrt{2}$. It intersects the plane when $2(1-t)-t=t$, or $t=\frac{1}{2}$. This intersection point has $z=\frac{\sqrt{2}}{2}$. Similarly, the intersection between $\overline{PR}$ and $\triangle BDE$ has $z=\frac{\sqrt{2}}{2}$. So $\overline{XY}$ lies on the plane $z=\frac{\sqrt{2}}{2}$, from which we obtain $X=\left( \frac{3}{2},\frac{3}{2},\frac{\sqrt{2}}{2}\right)$ and $Y=\left( -\frac{3}{2},-\frac{3}{2},\frac{\sqrt{2}}{2}\right)$. The area of the pentagon $EXQRY$ can be computed in the same way as above.

See also

2007 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png