Difference between revisions of "2005 AIME I Problems/Problem 2"
m ((minor) tex) |
|||
Line 12: | Line 12: | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
[[Category:Introductory Number Theory Problems]] | [[Category:Introductory Number Theory Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 19:03, 4 July 2013
Problem
For each positive integer , let denote the increasing arithmetic sequence of integers whose first term is and whose common difference is . For example, is the sequence For how many values of does contain the term ?
Solution
Suppose that the th term of the sequence is . Then so . The ordered pairs of positive integers that satisfy the last equation are ,, , , , , ,, , , and , and each of these gives a possible value of . Thus the requested number of values is , and the answer is .
Alternatively, notice that the formula for the number of divisors states that there are divisors of .
See also
2005 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.