Difference between revisions of "1999 AIME Problems/Problem 15"
m (minor wik) |
(→Solution) |
||
Line 13: | Line 13: | ||
The area of the base is <math>104</math>, so the volume is <math>\frac{104*12}{3}=\boxed{408}</math>. | The area of the base is <math>104</math>, so the volume is <math>\frac{104*12}{3}=\boxed{408}</math>. | ||
+ | |||
+ | ==Alternate Solution== | ||
+ | |||
+ | Consider the diagram provided in the previous solution. We first note that the medial triangle has coordinates <math>(17, 0, 0)</math>, <math>(8, 12, 0)</math>, and <math>(25, 12, 0)</math>. We can compute the area of this triangle as 102. Suppose <math>(x, y, z)</math> are the coordinates of the vertex of the resulting pyramid. Call this point <math>V</math>. Clearly, the height of the pyramid is <math>z</math>. The desired volume is thus <math>\frac{102z}{3} = 34z</math>. | ||
+ | |||
+ | We note that when folding the triangle to form the pyramid, some side lengths must stay the same. In particular, <math>VR = RA</math>, <math>VP = PB</math>, and <math>VQ = QC</math>. We thus arrive at a fairly simple system of equations, yielding <math>z = 12</math>. The desired volume is thus <math>34 \times 12 = \boxed{408}</math>. | ||
== See also == | == See also == |
Revision as of 22:50, 7 March 2009
Problem
Consider the paper triangle whose vertices are and The vertices of its midpoint triangle are the midpoints of its sides. A triangular pyramid is formed by folding the triangle along the sides of its midpoint triangle. What is the volume of this pyramid?
Solution
Let , , be the feet of the altitudes to sides , , , respectively, of . The base of the tetrahedron is the orthocenter of the large triangle, so we just need to find that, then it's easy from there.
To find the coordinates of , we need to find the intersection point of altitudes and . The equation of is simply . is perpendicular to line , so the slope of is equal to the negative reciprocal of the slope of . has slope , therefore . These two lines intersect at , so that's the base of the height of the tetrahedron.
Let be the foot of altitude in . From the Pythagorean Theorem, . However, since and are, by coincidence, the same point, and .
The area of the base is , so the volume is .
Alternate Solution
Consider the diagram provided in the previous solution. We first note that the medial triangle has coordinates , , and . We can compute the area of this triangle as 102. Suppose are the coordinates of the vertex of the resulting pyramid. Call this point . Clearly, the height of the pyramid is . The desired volume is thus .
We note that when folding the triangle to form the pyramid, some side lengths must stay the same. In particular, , , and . We thus arrive at a fairly simple system of equations, yielding . The desired volume is thus .
See also
1999 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |