Difference between revisions of "2008 AMC 10A Problems/Problem 18"

(solutions)
(Solution 1)
Line 19: Line 19:
 
a+b &= \frac{2ab+32^2}{64}\end{align*}</math></center>
 
a+b &= \frac{2ab+32^2}{64}\end{align*}</math></center>
 
From <math>(2)</math> we have <math>2ab = 80</math>, so
 
From <math>(2)</math> we have <math>2ab = 80</math>, so
<center><math>a+b &= \frac{80 + 32^2}{64} = \frac{59}{4}.</math></center>
+
<center><math>a+b &= \frac{80 + 32^2}{64} = \frac{69}{4}.</math></center>
 
The length of the hypotenuse is <math>p - a - b = 32 - \frac{69}{4} = \frac{59}{4}\ \mathrm{(B)}</math>.
 
The length of the hypotenuse is <math>p - a - b = 32 - \frac{69}{4} = \frac{59}{4}\ \mathrm{(B)}</math>.
  

Revision as of 16:04, 23 May 2008

Problem

A right triangle has perimeter $32$ and area $20$. What is the length of its hypotenuse?

$\mathrm{(A)}\ \frac{57}{4}\qquad\mathrm{(B)}\ \frac{59}{4}\qquad\mathrm{(C)}\ \frac{61}{4}\qquad\mathrm{(D)}\ \frac{63}{4}\qquad\mathrm{(E)}\ \frac{65}{4}$

Solution

Solution 1

Let the legs of the triangle have lengths $a,b$. Then, by the Pythagorean Theorem, the length of the hypotenuse is $\sqrt{a^2+b^2}$, and the area of the triangle is $\frac 12 ab$. So we have the two equations

$\begin{align}

a+b+\sqrt{a^2+b^2} &= 32 \\ \frac{1}{2}ab &= 20

\end{align}$ (Error compiling LaTeX. Unknown error_msg)

Re-arranging the first equation and squaring,

$\begin{align*}

\sqrt{a^2+b^2} &= 32-(a+b)\\ a^2 + b^2 &= 32^2 - 64(a+b) + (a+b)^2\\ a^2 + b^2 + 64(a+b) &= a^2 + b^2 + 2ab + 32^2\\

a+b &= \frac{2ab+32^2}{64}\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

From $(2)$ we have $2ab = 80$, so

$a+b &= \frac{80 + 32^2}{64} = \frac{69}{4}.$ (Error compiling LaTeX. Unknown error_msg)

The length of the hypotenuse is $p - a - b = 32 - \frac{69}{4} = \frac{59}{4}\ \mathrm{(B)}$.

Solution 2

From the formula $A = rs$, where $A$ is the area of a triangle, $r$ is its inradius, and $s$ is the semiperimeter, we can find that $r = \frac{20}{32/2} = \frac{5}{4}$. It is known that in a right triangle, $r = s - h$, where $h$ is the hypotenuse, so $h = 16 - \frac{5}{4} = \frac{59}{4}$.

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions