GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2008 AMC 10A Problems"

(Problem 12)
m (Problem 12 - Typo...)
Line 82: Line 82:
  
 
==Problem 12==
 
==Problem 12==
In a collection of red, blue, and green marbles, there are <math>25\%</math> more red marbles than blue marbles, and there are <math>60\%</math> mroe green marbles than red marbles. Suppose that there are <math>r</math> red marbles. What is the total number of marbles in the collection?
+
In a collection of red, blue, and green marbles, there are <math>25\%</math> more red marbles than blue marbles, and there are <math>60\%</math> more green marbles than red marbles. Suppose that there are <math>r</math> red marbles. What is the total number of marbles in the collection?
  
 
<math>\mathrm{(A)}\ 2.85r\qquad\mathrm{(B)}\ 3r\qquad\mathrm{(C)}\ 3.4r\qquad\mathrm{(D)}\ 3.85r\qquad\mathrm{(E)}\ 4.25r</math>
 
<math>\mathrm{(A)}\ 2.85r\qquad\mathrm{(B)}\ 3r\qquad\mathrm{(C)}\ 3.4r\qquad\mathrm{(D)}\ 3.85r\qquad\mathrm{(E)}\ 4.25r</math>

Revision as of 00:11, 26 April 2008

Problem 1

A bakery owner turns on his doughnut machine at $\text{8:30}\ {\small\text{AM}}$. At $\text{11:10}\ {\small\text{AM}}$ the machine has completed one third of the day's job. At what time will the doughnut machine complete the job?

$\mathrm{(A)}\ \text{1:50}\ {\small\text{PM}}\qquad\mathrm{(B)}\ \text{3:00}\ {\small\text{PM}}\qquad\mathrm{(C)}\ \text{3:30}\ {\small\text{PM}}\qquad\mathrm{(D)}\ \text{4:30}\ {\small\text{PM}}\qquad\mathrm{(E)}\ \text{5:50}\ {\small\text{PM}}$

Solution

Problem 2

A square is drawn inside a rectangle. The ratio of the width of the rectangle to a side of the square is $2:1$. The ratio of the rectangle's length to its width is $2:1$. What percent of the rectangle's area is inside the square?

$\mathrm{(A)}\ 12.5\qquad\mathrm{(B)}\ 25\qquad\mathrm{(C)}\ 50\qquad\mathrm{(D)}\ 75\qquad\mathrm{(E)}\ 87.5$

Solution

Problem 3

For the positive integer $n$, let $<n>$ denote the sum of all the positive divisors of $n$ with the exception of $n$ itself. For example, $<4>$ and $<12>=1+2+3+4+6=16$. What is $<<<6>>>$?

$\mathrm{(A)}\ 6\qquad\mathrm{(B)}\ 12\qquad\mathrm{(C)}\ 24\qquad\mathrm{(D)}\ 32\qquad\mathrm{(E)}\ 36$

Solution

Problem 4

Suppose that $\tfrac{2}{3}$ of $10$ bananas are worth as much as $8$ oranges. How many oranges are worth as much as $\tfrac{1}{2}$ of $5$ bananas?

$\mathrm{(A)}\ 2\qquad\mathrm{(B)}\ \frac{5}{2}\qquad\mathrm{(C)}\ 3\qquad\mathrm{(D)}\ \frac{7}{2}\qquad\mathrm{(E)}\ 4$

Solution

Problem 5

Which of the following is equal to the product \[\frac{8}{4}\cdot\frac{12}{8}\cdot\frac{16}{12}\cdot\cdots\cdot\frac{4n+4}{4n}\cdot\cdots\cdot\frac{2008}{2004}?\]

$\mathrm{(A)}\ 251\qquad\mathrm{(B)}\ 502\qquad\mathrm{(C)}\ 1004\qquad\mathrm{(D)}\ 2008\qquad\mathrm{(E)}\ 4016$

Solution

Problem 6

A triathlete competes in a triathlon in which the swimming, biking, and running segments are all of the same length. The triathlete swims at a rate of 3 kilometers per hour, bikes at a rate of 20 kilometers per hour, and runs at a rate of 10 kilometers per hour. Which of the following is closest to the triathlete's average speed, in kilometers per hour, for the entire race?

$\mathrm{(A)}\ 3\qquad\mathrm{(B)}\ 4\qquad\mathrm{(C)}\ 5\qquad\mathrm{(D)}\ 6\qquad\mathrm{(E)}\ 7$

Solution

Problem 7

The fraction \[\frac{\left(3^{2008}\right)^2-\left(3^{2006}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}\] simplifies to which of the following?

$\mathrm{(A)}\ 1\qquad\mathrm{(B)}\ \frac{9}{4}\qquad\mathrm{(C)}\ 3\qquad\mathrm{(D)}\ \frac{9}{2}\qquad\mathrm{(E)}\ 9$

Solution

Problem 8

Heather compares the price of a new computer at two different stores. Store $A$ offers $15\%$ off the sticker price followed by a $$$90$ rebate, and store $B$ offers $25\%$ off the same sticker price with no rebate. Heather saves $$$15$ by buying the computer at store $A$ instead of store $B$. What is the sticker price of the computer, in dollars?

$\mathrm{(A)}\ 750\qquad\mathrm{(B)}\ 900\qquad\mathrm{(C)}\ 1000\qquad\mathrm{(D)}\ 1050\qquad\mathrm{(E)}\ 1500$

Solution

Problem 9

Suppose that \[\frac{2x}{3}-\frac{x}{6}\] is an integer. Which of the following statements must be true about $x$?

$\mathrm{(A)}\ \text{It is negative.}\qquad\mathrm{(B)}\ \text{It is even, but not necessarily a multiple of 3.}\\\qquad\mathrm{(C)}\ \text{It is a multiple of 3, but not necessarily even.}\\\qquad\mathrm{(D)}\ \text{It is a multiple of 6, but not necessarily a multiple of 12.}\\\qquad\mathrm{(E)}\ \text{It is a multiple of 12.}$

Solution

Problem 10

Each of the sides of a square $S_1$ with area $16$ is bisected, and a smaller square $S_2$ is constructed using the bisection points as vertices. The same process is carried out on $S_2$ to construct an even smaller square $S_3$. What is the area of $S_3$?

$\mathrm{(A)}\ \frac{1}{2}\qquad\mathrm{(B)}\ 1\qquad\mathrm{(C)}\ 2\qquad\mathrm{(D)}\ 3\qquad\mathrm{(E)}\ 4$

Solution

Problem 11

While Steve and LeRoy are fishing 1 mile from shore, their boat springs a leak, and water comes in at a constant rate of 10 gallons per minute. The boat will sink if it takes in more than 30 gallons of water. Steve starts rowing toward the shore at a constant rate of 4 miles per hour while LeRoy bails water out of the boat. What is the slowest rate, in gallons per minute, at which LeRoy can bail if they are to reach the shore without sinking?

$\mathrm{(A)}\ 2\qquad\mathrm{(B)}\ 4\qquad\mathrm{(C)}\ 6\qquad\mathrm{(D)}\ 8\qquad\mathrm{(E)}\ 10$

Solution

Problem 12

In a collection of red, blue, and green marbles, there are $25\%$ more red marbles than blue marbles, and there are $60\%$ more green marbles than red marbles. Suppose that there are $r$ red marbles. What is the total number of marbles in the collection?

$\mathrm{(A)}\ 2.85r\qquad\mathrm{(B)}\ 3r\qquad\mathrm{(C)}\ 3.4r\qquad\mathrm{(D)}\ 3.85r\qquad\mathrm{(E)}\ 4.25r$

Solution

Problem 13

Doug can paint a room in $5$ hours. Dave can paint the same room in $7$ hours. Doug and Dave paint the room together and take a one-hour break for lunch. Let $t$ be the total time, in hours, required for them to complete the job working together, including lunch. Which of the following equations is satisfied by $t$?

$\mathrm{(A)}\ \left(\frac{1}{5}+\frac{1}{7}\right)\left(t+1\right)=1\qquad\mathrm{(B)}\ \left(\frac{1}{5}+\frac{1}{7}\right)t+1=1\qquad\mathrm{(C)}\ \left(\frac{1}{5}+\frac{1}{7}\right)t=1\\\mathrm{(D)}\ \left(\frac{1}{5}+\frac{1}{7}\right)\left(t-1\right)=1\qquad\mathrm{(E)}\ \left(5+7\right)t=1$

Solution

Problem 14

Older television screens have an aspect ratio of $4: 3$. That is, the ratio of the width to the height is $4: 3$. The aspect ratio of many movies is not $4: 3$, so they are sometimes shown on a television screen by "letterboxing" - darkening strips of equal height at the top and bottom of the screen, as shown. Suppose a movie has an aspect ratio of $2: 1$ and is shown on an older television screen with a $27$-inch diagonal. What is the height, in inches, of each darkened strip? [asy]unitsize(1mm); filldraw((0,0)--(21.6,0)--(21.6,2.7)--(0,2.7)--cycle,grey,black); filldraw((0,13.5)--(21.6,13.5)--(21.6,16.2)--(0,16.2)--cycle,grey,black); draw((0,0)--(21.6,0)--(21.6,16.2)--(0,16.2)--cycle);[/asy] $\mathrm{(A)}\ 2\qquad\mathrm{(B)}\ 2.25\qquad\mathrm{(C)}\ 2.5\qquad\mathrm{(D)}\ 2.7\qquad\mathrm{(E)}\ 3$

Solution

Problem 15

This problem has not been edited in. If you know this problem, please help us out by adding it.

Solution

Problem 16

This problem has not been edited in. If you know this problem, please help us out by adding it.

Solution

Problem 17

This problem has not been edited in. If you know this problem, please help us out by adding it.

Solution

Problem 18

This problem has not been edited in. If you know this problem, please help us out by adding it.

Solution

Problem 19

This problem has not been edited in. If you know this problem, please help us out by adding it.

Solution

Problem 20

Trapezoid $ABCD$ has bases $\overline{AB}$ and $\overline{CD}$ and diagonals intersecting at $K$. Suppose that $AB = 9$, $DC = 12$, and the area of $\triangle AKD$ is $24$. What is the area of trapezoid $ABCD$?

$\mathrm{(A)}\ 92\qquad\mathrm{(B)}\ 94\qquad\mathrm{(C)}\ 96\qquad\mathrm{(D)}\ 98 \qquad\mathrm{(E)}\ 100$

Solution

Problem 21

This problem has not been edited in. If you know this problem, please help us out by adding it.

Solution

Problem 22

Jacob uses the following procedure to write down a sequence of numbers. First he chooses the first term to be 6. To generate each succeeding term, he flips a fair coin. If it comes up heads, he doubles the previous term and subtracts 1. If it comes up tails, he takes half of the previous term and subtracts 1. What is the probability that the fourth term in Jacob's sequence is an integer?

$\mathrm{(A)}\ \frac{1}{6}\qquad\mathrm{(B)}\ \frac{1}{3}\qquad\mathrm{(C)}\ \frac{1}{2}\qquad\mathrm{(D)}\ \frac{5}{8}\qquad\mathrm{(E)}\ \frac{3}{4}$

Solution

Problem 23

This problem has not been edited in. If you know this problem, please help us out by adding it.

Solution

Problem 24

This problem has not been edited in. If you know this problem, please help us out by adding it.

Solution

Problem 25

This problem has not been edited in. If you know this problem, please help us out by adding it.

Solution