Difference between revisions of "2008 AMC 12A Problems/Problem 2"

(Standardized answer choices)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
 +
 +
===Solution 1===
 +
 +
Here's a cheapshot:
 +
Obviously, <math>\frac{1}{2}+\frac{2}{3}</math> is greater than <math>1</math>. Therefore, its reciprocal is less than <math>1</math>, and the answer must be <math>\boxed{\frac{6}{7}}</math>.
 +
 +
===Solution 2===
 +
 
<math>\left(\frac{1}{2}+\frac{2}{3}\right)^{-1}=\left(\frac{3}{6}+\frac{4}{6}\right)^{-1}=\left(\frac{7}{6}\right)^{-1}=\frac{6}{7}\Rightarrow A</math>.
 
<math>\left(\frac{1}{2}+\frac{2}{3}\right)^{-1}=\left(\frac{3}{6}+\frac{4}{6}\right)^{-1}=\left(\frac{7}{6}\right)^{-1}=\frac{6}{7}\Rightarrow A</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2008|ab=A|num-b=1|num-a=3}}
 
{{AMC12 box|year=2008|ab=A|num-b=1|num-a=3}}

Revision as of 23:18, 22 February 2011

Problem

What is the reciprocal of $\frac{1}{2}+\frac{2}{3}$?

$\mathrm{(A)}\ \frac{6}{7}\qquad\mathrm{(B)}\ \frac{7}{6}\qquad\mathrm{(C)}\ \frac{5}{3}\qquad\mathrm{(D)}\ 3\qquad\mathrm{(E)}\ \frac{7}{2}$

Solution

Solution 1

Here's a cheapshot: Obviously, $\frac{1}{2}+\frac{2}{3}$ is greater than $1$. Therefore, its reciprocal is less than $1$, and the answer must be $\boxed{\frac{6}{7}}$.

Solution 2

$\left(\frac{1}{2}+\frac{2}{3}\right)^{-1}=\left(\frac{3}{6}+\frac{4}{6}\right)^{-1}=\left(\frac{7}{6}\right)^{-1}=\frac{6}{7}\Rightarrow A$.

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions