Difference between revisions of "Cauchy-Schwarz Inequality"
Quantum leap (talk | contribs) |
(bolded article name) |
||
Line 1: | Line 1: | ||
− | The Cauchy-Schwarz | + | The '''Cauchy-Schwarz Inequality''' (which is known by other names, including Cauchy's Inequality) states that, for two sets of real numbers <math>a_1,a_2,\ldots,a_n</math> and <math>b_1,b_2,\ldots,b_n</math>, the following inequality is always true: |
<math>\displaystyle({a_1}^2+{a_2}^2+...+{a_n}^2)({b_1}^2+{b_2}^2+...+{b_n}^2)\geq(a_1b_1+a_2b_2+...+a_nb_n)^2</math> | <math>\displaystyle({a_1}^2+{a_2}^2+...+{a_n}^2)({b_1}^2+{b_2}^2+...+{b_n}^2)\geq(a_1b_1+a_2b_2+...+a_nb_n)^2</math> |
Revision as of 01:26, 18 June 2006
The Cauchy-Schwarz Inequality (which is known by other names, including Cauchy's Inequality) states that, for two sets of real numbers and , the following inequality is always true:
Equality holds if and only if .
There are many ways to prove this; one of the more well-known is to consider the equation . Expanding, we find the equation to be of the form , where , , and . By the Trivial Inequality, we know that the left-hand-side of the original equation is always at least 0, so either both roots are Complex Numbers, or there is a double root at . Either way, the discriminant of the equation is nonpositive. Taking the discriminant, and substituting the above values of A, B, and C leaves us with the Cauchy-Schwarz Inequality, , or, in the more compact sigma notation,
Note that this also gives us the equality case; equality holds if and only if the discriminant is equal to 0, which is true if and only if the equation has 0 as a double root, which is true if and only if .
This inequality is used very frequently to solve Olympiad-level Inequality problems, such as those on the USAMO and IMO.