Difference between revisions of "Wilson's Theorem"
(→Example Problem utilizing Wilson's) |
(→Example) |
||
Line 10: | Line 10: | ||
==Example== | ==Example== | ||
− | Let <math>{p}</math> be a prime number such that dividing <math>{p}<math> by 4 leaves the remainder 1. Show that there is an integer <math>{n}</math> such that <math>n^2+1</math> is divisible by <math>{p}</math>. | + | Let <math>{p}</math> be a prime number such that dividing <math>{p}</math> by 4 leaves the remainder 1. Show that there is an integer <math>{n}</math> such that <math>n^2 + 1</math> is divisible by <math>{p}</math>. |
<Solutions?> | <Solutions?> |
Revision as of 23:41, 17 June 2006
Contents
Statement
If and only if is a prime, then
is a multiple of
. In other words
.
Proof
Wilson's theorem is easily verifiable for 2 and 3, so let's consider . If
is composite, then its positive factors are among
. Hence,
, so
.
However if is prime, then each of the above integers are relatively prime to
. So for each of these integers a there is another
such that
. It is important to note that this
is unique modulo
, and that since
is prime,
if and only if
is
or
. Now if we omit 1 and
, then the others can be grouped into pairs whose product is congruent to one,
Finally, multiply this equality by to complete the proof.
Example
Let be a prime number such that dividing
by 4 leaves the remainder 1. Show that there is an integer
such that
is divisible by
.
<Solutions?>