Difference between revisions of "2002 AIME II Problems/Problem 9"

(It's wrong, plugged in x=8, y=2.)
(SOMEONE ELSE DO IT.)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
For simplicity, let's call the sets <math>\mathcal{A}</math> and <math>\mathcal{B}</math>. Now if we choose <math>x</math> members from <math>\mathcal{S}</math> to be in <math>\mathcal{A}</math>, then we have <math>10-x</math> elements to choose for <math>\mathcal{B}</math>. Thus
 +
 
 +
<math>n=\sum_{x=1}^{9} (\binom{10}{x}\cdot(\sum_{n=1}^{10-x}\binom{10-x}{n}))=\sum_{x=1}^{9} (\binom{10}{x}\cdot(2^{10-x}-1))=\binom{10}{1}\cdot511+\binom{10}{2}\cdot255+\binom{10}{3}\cdot127+\binom{10}{4}\cdot63+\binom{10}{5}\cdot31+\binom{10}{6}\cdot15+\binom{10}{7}\cdot7+\binom{10}{8}\cdot3+\binom{10}{9}\cdot1=\binom{10}{1}\cdot512+\binom{10}{2}\cdot258+\binom{10}{3}\cdot134+\binom{10}{4}\cdot78+\binom{10}{5}\cdot31</math>.
 +
 
 +
We want the remainder when <math>n</math> is divided by 1000, so we find the last three digits of each.
 +
 
 +
{{incomplete|solution}}
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2002|n=II|num-b=8|num-a=10}}
 
{{AIME box|year=2002|n=II|num-b=8|num-a=10}}

Revision as of 09:59, 24 June 2008

Problem

Let $\mathcal{S}$ be the set $\lbrace1,2,3,\ldots,10\rbrace$ Let $n$ be the number of sets of two non-empty disjoint subsets of $\mathcal{S}$. (Disjoint sets are defined as sets that have no common elements.) Find the remainder obtained when $n$ is divided by $1000$.

Solution

For simplicity, let's call the sets $\mathcal{A}$ and $\mathcal{B}$. Now if we choose $x$ members from $\mathcal{S}$ to be in $\mathcal{A}$, then we have $10-x$ elements to choose for $\mathcal{B}$. Thus

$n=\sum_{x=1}^{9} (\binom{10}{x}\cdot(\sum_{n=1}^{10-x}\binom{10-x}{n}))=\sum_{x=1}^{9} (\binom{10}{x}\cdot(2^{10-x}-1))=\binom{10}{1}\cdot511+\binom{10}{2}\cdot255+\binom{10}{3}\cdot127+\binom{10}{4}\cdot63+\binom{10}{5}\cdot31+\binom{10}{6}\cdot15+\binom{10}{7}\cdot7+\binom{10}{8}\cdot3+\binom{10}{9}\cdot1=\binom{10}{1}\cdot512+\binom{10}{2}\cdot258+\binom{10}{3}\cdot134+\binom{10}{4}\cdot78+\binom{10}{5}\cdot31$.

We want the remainder when $n$ is divided by 1000, so we find the last three digits of each.

Template:Incomplete

See also

2002 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions