Difference between revisions of "2002 AIME II Problems/Problem 9"
I like pie (talk | contribs) m |
I like pie (talk | contribs) (Added problem, solution still needed) |
||
Line 1: | Line 1: | ||
− | |||
== Problem == | == Problem == | ||
+ | Let <math>\mathcal{S}</math> be the set <math>\lbrace1,2,3,\ldots,10\rbrace</math> Let <math>n</math> be the number of sets of two non-empty disjoint subsets of <math>\mathcal{S}</math>. (Disjoint sets are defined as sets that have no common elements.) Find the remainder obtained when <math>n</math> is divided by <math>1000</math>. | ||
== Solution == | == Solution == |
Revision as of 13:03, 19 April 2008
Problem
Let be the set Let be the number of sets of two non-empty disjoint subsets of . (Disjoint sets are defined as sets that have no common elements.) Find the remainder obtained when is divided by .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
2002 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |