Difference between revisions of "2004 AIME II Problems/Problem 10"

m
m (tex)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math> S </math> be the set of integers between 1 and <math> 2^{40} </math> whose binary expansions have exactly two 1's. If a number is chosen at random from <math> S, </math> the probability that it is divisible by 9 is <math> p/q, </math> where <math> p </math> and <math> q </math> are relatively prime positive integers. Find <math> p+q. </math>
+
Let <math> S </math> be the [[set]] of [[integer]]s between <math>1</math> and <math> 2^{40} </math> whose binary expansions have exactly two <math>1</math>'s. If a number is chosen at random from <math> S, </math> the [[probability]] that it is divisible by <math>9</math> is <math> p/q, </math> where <math> p </math> and <math> q </math> are relatively prime positive integers. Find <math> p+q. </math>
  
 
== Solution ==
 
== Solution ==
A [[positive integer]] <math>n</math> has exactly two 1s in its [[binary representation]] exactly when <math>n = 2^j + 2^k</math> for <math>j \neq k</math> [[nonnegative]] [[integer]]s.  Thus, the [[set]] <math>S</math> is equal to the set <math>\{n \in \mathbb{Z} \mid n = 2^j + 2^k \,\mathrm{ and }\, 0 \leq j < k \leq 39\}</math>.  (The second condition ensures simultaneously that <math>j \neq k</math> and that each such number less than <math>2^{40}</math> is counted exactly once.)  This means there are <math>{40 \choose 2} = 780</math> total such numbers.
+
A positive integer <math>n</math> has exactly two 1s in its [[binary representation]] exactly when <math>n = 2^j + 2^k</math> for <math>j \neq k</math> [[nonnegative]] integers.  Thus, the [[set]] <math>S</math> is equal to the set <math>\{n \in \mathbb{Z} \mid n = 2^j + 2^k \,\mathrm{ and }\, 0 \leq j < k \leq 39\}</math>.  (The second condition ensures simultaneously that <math>j \neq k</math> and that each such number less than <math>2^{40}</math> is counted exactly once.)  This means there are <math>{40 \choose 2} = 780</math> total such numbers.
  
Now, consider the powers of 2 [[modular arithmetic | mod]] 9: <math>2^{6n} \equiv 1, 2^{6n + 1} \equiv 2, 2^{6n + 2} \equiv 4, 2^{6n + 3} \equiv 8 \equiv -1, 2^{6n + 4} \equiv 7 \equiv -2, 2^{6n + 5} \equiv 5 \equiv -4 \pmod 9</math>.   
+
Now, consider the powers of <math>2</math> [[modular arithmetic | mod]] <math>9</math>: <math>2^{6n} \equiv 1, 2^{6n + 1} \equiv 2, 2^{6n + 2} \equiv 4, 2^{6n + 3} \equiv 8 \equiv -1,</math> <math> 2^{6n + 4} \equiv 7 \equiv -2,</math> <math> 2^{6n + 5} \equiv 5 \equiv -4 \pmod 9</math>.   
  
 
It's clear what the pairs <math>j, k</math> can look like.  If one is of the form <math>6n</math> (7 choices), the other must be of the form <math>6n + 3</math> (7 choices).  If one is of the form <math>6n + 1</math> (7 choices) the other must be of the form <math>6n + 4</math> (6 choices).  And if one is of the form <math>6n + 2</math> (7 choices), the other must be of the form <math>6n + 5</math> (6 choices).  This means that there are <math>7\cdot 7 + 7\cdot 6 + 7\cdot 6 = 49 + 42 +42 = 133</math> total "good" numbers.
 
It's clear what the pairs <math>j, k</math> can look like.  If one is of the form <math>6n</math> (7 choices), the other must be of the form <math>6n + 3</math> (7 choices).  If one is of the form <math>6n + 1</math> (7 choices) the other must be of the form <math>6n + 4</math> (6 choices).  And if one is of the form <math>6n + 2</math> (7 choices), the other must be of the form <math>6n + 5</math> (6 choices).  This means that there are <math>7\cdot 7 + 7\cdot 6 + 7\cdot 6 = 49 + 42 +42 = 133</math> total "good" numbers.
  
The [[probability]] is <math>\frac{133}{780}</math>, and the answer is <math>133 + 780 = 913</math>.
+
The probability is <math>\frac{133}{780}</math>, and the answer is <math>133 + 780 = \boxed{913}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 19:10, 25 July 2008

Problem

Let $S$ be the set of integers between $1$ and $2^{40}$ whose binary expansions have exactly two $1$'s. If a number is chosen at random from $S,$ the probability that it is divisible by $9$ is $p/q,$ where $p$ and $q$ are relatively prime positive integers. Find $p+q.$

Solution

A positive integer $n$ has exactly two 1s in its binary representation exactly when $n = 2^j + 2^k$ for $j \neq k$ nonnegative integers. Thus, the set $S$ is equal to the set $\{n \in \mathbb{Z} \mid n = 2^j + 2^k \,\mathrm{ and }\, 0 \leq j < k \leq 39\}$. (The second condition ensures simultaneously that $j \neq k$ and that each such number less than $2^{40}$ is counted exactly once.) This means there are ${40 \choose 2} = 780$ total such numbers.

Now, consider the powers of $2$ mod $9$: $2^{6n} \equiv 1, 2^{6n + 1} \equiv 2, 2^{6n + 2} \equiv 4, 2^{6n + 3} \equiv 8 \equiv -1,$ $2^{6n + 4} \equiv 7 \equiv -2,$ $2^{6n + 5} \equiv 5 \equiv -4 \pmod 9$.

It's clear what the pairs $j, k$ can look like. If one is of the form $6n$ (7 choices), the other must be of the form $6n + 3$ (7 choices). If one is of the form $6n + 1$ (7 choices) the other must be of the form $6n + 4$ (6 choices). And if one is of the form $6n + 2$ (7 choices), the other must be of the form $6n + 5$ (6 choices). This means that there are $7\cdot 7 + 7\cdot 6 + 7\cdot 6 = 49 + 42 +42 = 133$ total "good" numbers.

The probability is $\frac{133}{780}$, and the answer is $133 + 780 = \boxed{913}$.

See also

2004 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions