Difference between revisions of "2006 Alabama ARML TST Problems/Problem 6"

(New page: ==Problem== Let <math>\lfloor a \rfloor</math> be the greatest integer less than or equal to <math>a</math> and let <math>\{a\}=a-\lfloor a \rfloor</math>. Find <math>10(x+y+z)</math> give...)
 
(See also)
Line 16: Line 16:
  
 
==See also==
 
==See also==
 +
{{ARML box|year=2006|state=Alabama|num-b=5|num-a=7}}

Revision as of 07:21, 15 April 2008

Problem

Let $\lfloor a \rfloor$ be the greatest integer less than or equal to $a$ and let $\{a\}=a-\lfloor a \rfloor$. Find $10(x+y+z)$ given that

$\begin{align}

x+\lfloor y \rfloor +\{z\}=14.2,\\ \lfloor x \rfloor+\{y\} +z=15.3,\\ \{x\}+y +\lfloor z \rfloor=16.1.

\end{align}$ (Error compiling LaTeX. Unknown error_msg)

Solution

Let's add all three equations:

$x+\lfloor y \rfloor +\{z\}+\lfloor x \rfloor+\{y\} +z+\{x\}+y +\lfloor z \rfloor=x+x+y+y+z+z=2(x+y+z)=45.6$

And thus $10(x+y+z)=5\cdot 45.6=\boxed{228}$.

See also

2006 Alabama ARML TST (Problems)
Preceded by:
Problem 5
Followed by:
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15