Difference between revisions of "2008 AIME II Problems/Problem 5"
(revise) |
|||
Line 59: | Line 59: | ||
label("\(N\)",N,S); | label("\(N\)",N,S); | ||
label("\(H\)",H,S); | label("\(H\)",H,S); | ||
− | label("\(x\)",( | + | label("\(x\)",(N+H)/2,S); |
label("\(h\)",(B+F)/2,W); | label("\(h\)",(B+F)/2,W); | ||
label("\(h\)",(C+G)/2,W); | label("\(h\)",(C+G)/2,W); | ||
label("\(1000\)",(B+C)/2,NE); | label("\(1000\)",(B+C)/2,NE); | ||
− | label("\( | + | label("\(504-x\)",(G+D)/2,S); |
+ | label("\(504+x\)",(A+F)/2,S); | ||
</asy></center> | </asy></center> | ||
− | Let <math>F,G,H</math> be the feet of the [[perpendicular]]s from <math>B,C,M</math> onto <math>\overline{AD}</math>, respectively. Let <math>x = | + | Let <math>F,G,H</math> be the feet of the [[perpendicular]]s from <math>B,C,M</math> onto <math>\overline{AD}</math>, respectively. Let <math>x = NH</math>, so <math>DG = 1004 - 500 - x = 504 - x</math> and <math>AF = 1004 - (504 - x) = 504 + x</math>. Also, let <math>h = BF = CG = HM</math>. |
By AA~, we have that <math>\triangle AFB \sim \triangle CGD</math>, and so | By AA~, we have that <math>\triangle AFB \sim \triangle CGD</math>, and so | ||
− | <cmath>\frac{BF}{AF} = \frac {CG}{DG} \Longleftrightarrow \frac{h}{x} = \frac{ | + | <cmath>\frac{BF}{AF} = \frac {CG}{DG} \Longleftrightarrow \frac{h}{504+x} = \frac{504-x}{h} \Longrightarrow h^2 = (504 + x)(504 - x)\Longrightarrow x^2 + h^2 = 504^2.</cmath> |
− | + | By the [[Pythagorean Theorem]] on <math>\triangle MHN</math>, | |
− | <cmath>MN^{2} = | + | <cmath>MN^{2} = x^2 + h^2 = 504^2,</cmath> so <math>MN = \boxed{504}\</math>. |
− | |||
== See also == | == See also == |
Revision as of 22:29, 3 April 2008
Problem 5
In trapezoid with , let and . Let , , and and be the midpoints of and , respectively. Find the length .
Solution
Solution 1
Extend and to meet at a point . Then .
Since , then and are homothetic with respect to point by a ratio of . Since the homothety carries the midpoint of , , to the midpoint of , which is , then are collinear.
As , note that the midpoint of , , is the center of the circumcircle of . We can do the same with the circumcircle about and (or we could apply the homothety to find in terms of ). It follows that Thus .
Solution 2
Let be the feet of the perpendiculars from onto , respectively. Let , so and . Also, let .
By AA~, we have that , and so
By the Pythagorean Theorem on , so .
See also
2008 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |