Difference between revisions of "2000 AIME II Problems/Problem 14"

Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
Note that <math>1+\sum_{k=1}^{n} {k\cdot k!} = 1+\sum_{k=1}^{n} {(k+1)\cdot k!-\cdot k!} = 1+\sum_{k=1}^{n} {\cdot (k+1)!-\cdot k!} = (k+1)!
+
Note that <math>1+\sum_{k=1}^{n} {k\cdot k!} = 1+\sum_{k=1}^{n} {(k+1)\cdot k!-\cdot k!} = 1+\sum_{k=1}^{n} {\cdot (k+1)!-\cdot k!} = (k+1)!</math>
The answer is </math>\boxed{495}$.
+
The answer is <math>\boxed{495}</math>.
  
 
{{incomplete|solution}}
 
{{incomplete|solution}}
  
 
{{AIME box|year=2000|n=II|num-b=13|num-a=15}}
 
{{AIME box|year=2000|n=II|num-b=13|num-a=15}}

Revision as of 14:21, 29 March 2008

Problem

Every positive integer $k$ has a unique factorial base expansion $(f_1,f_2,f_3,\ldots,f_m)$, meaning that $k=1!\cdot f_1+2!\cdot f_2+3!\cdot f_3+\cdots+m!\cdot f_m$, where each $f_i$ is an integer, $0\le f_i\le i$, and $0<f_m$. Given that $(f_1,f_2,f_3,\ldots,f_j)$ is the factorial base expansion of $16!-32!+48!-64!+\cdots+1968!-1984!+2000!$, find the value of $f_1-f_2+f_3-f_4+\cdots+(-1)^{j+1}f_j$.

Solution

Note that $1+\sum_{k=1}^{n} {k\cdot k!} = 1+\sum_{k=1}^{n} {(k+1)\cdot k!-\cdot k!} = 1+\sum_{k=1}^{n} {\cdot (k+1)!-\cdot k!} = (k+1)!$ The answer is $\boxed{495}$.

Template:Incomplete

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions