Difference between revisions of "2008 AIME I Problems/Problem 14"
m (→Solution 2: typo fix) |
m (→Solution 1) |
||
Line 24: | Line 24: | ||
Let <math>x = OC</math>. Since <math>OT, AP \perp TC</math>, it follows easily that <math>\triangle APC \sim \triangle OTC</math>. Thus <math>\frac{AP}{OT} = \frac{CA}{CO} \Longrightarrow AP = \frac{9(x-9)}{x}</math>. By the [[Law of Cosines]] on <math>\triangle BAP</math>, | Let <math>x = OC</math>. Since <math>OT, AP \perp TC</math>, it follows easily that <math>\triangle APC \sim \triangle OTC</math>. Thus <math>\frac{AP}{OT} = \frac{CA}{CO} \Longrightarrow AP = \frac{9(x-9)}{x}</math>. By the [[Law of Cosines]] on <math>\triangle BAP</math>, | ||
<cmath>\begin{align*}BP^2 = AB^2 + AP^2 - 2 \cdot AB \cdot AP \cdot \cos \angle BAP \end{align*}</cmath> | <cmath>\begin{align*}BP^2 = AB^2 + AP^2 - 2 \cdot AB \cdot AP \cdot \cos \angle BAP \end{align*}</cmath> | ||
− | where <math>\cos \angle BAP = \cos (180 - \angle TOA) = - \frac{OT}{OC} = - \frac{9}{x}</math>, so: | + | where <math>\cos \angle BAP = -\cos (180 - \angle TOA) = - \frac{OT}{OC} = - \frac{9}{x}</math>, so: |
<cmath>\begin{align*}BP^2 &= 18^2 + \frac{9^2(x-9)^2}{x^2} + 2(18) \cdot \frac{9(x-9)}{x} \cdot \frac 9x = 405 + 729\left(\frac{2x - 27}{x^2}\right)\end{align*}</cmath> | <cmath>\begin{align*}BP^2 &= 18^2 + \frac{9^2(x-9)^2}{x^2} + 2(18) \cdot \frac{9(x-9)}{x} \cdot \frac 9x = 405 + 729\left(\frac{2x - 27}{x^2}\right)\end{align*}</cmath> | ||
Let <math>m = \frac{2x-27}{x^2} \Longrightarrow mx^2 - 2x + 27 = 0</math>; this is a quadratic, and its [[discriminant]] must be nonnegative: <math>(-2)^2 - 4(m)(27) \ge 0 \Longleftrightarrow m \le \frac{1}{27}</math>. Thus, | Let <math>m = \frac{2x-27}{x^2} \Longrightarrow mx^2 - 2x + 27 = 0</math>; this is a quadratic, and its [[discriminant]] must be nonnegative: <math>(-2)^2 - 4(m)(27) \ge 0 \Longleftrightarrow m \le \frac{1}{27}</math>. Thus, |
Revision as of 22:41, 18 October 2008
Problem
Let be a diameter of circle . Extend through to . Point lies on so that line is tangent to . Point is the foot of the perpendicular from to line . Suppose , and let denote the maximum possible length of segment . Find .
Solution
Solution 1
Let . Since , it follows easily that . Thus . By the Law of Cosines on , where , so: Let ; this is a quadratic, and its discriminant must be nonnegative: . Thus, Equality holds when .
Solution 2
From the diagram, we see that , and that .
This is a quadratic equation, maximized when . Thus, .
See also
2008 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |