Difference between revisions of "2025 AIME I Problems/Problem 15"
(→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>N</math> denote the number of ordered triples of positive integers <math>(a, b, c)</math> such that <math>a, b, c \leq 3^6</math> and <math>a^3 + b^3 + c^3</math> is a multiple of <math>3^7</math>. Find the remainder when <math>N</math> is divided by <math>1000</math>. | + | Let <math>N</math> denote the number of ordered triples of positive integers <math>(a, b, c)</math> such that <math>a, b, c \leq 3^6</math> and <math>a^3 + b^3 + c^3</math> is a multiple of <math>3^7</math>. Find the remainder when <math>N</math> is divided by <math>1000</math>. |
+ | |||
+ | ==Solution== | ||
+ | |||
+ | First, state the LTE Lemma for <math>p = 3, n = 3</math>, which we might use. | ||
+ | |||
+ | |||
+ | <math>\bullet</math> <math> \nu_3(n) = \begin{cases} | ||
+ | \max \{k : 3^k \mid n\} &n\neq 0\\ | ||
+ | \infty &n=0 | ||
+ | \end{cases}</math> | ||
+ | |||
+ | <math>\bullet</math> If <math>3 \nmid x, 3\nmid y, 3\mid x+y</math>, then <math>\nu_3(x^3+y^3) = \nu_3(x+y) + \nu_3(3) = \nu_3(x+y) + 1</math> | ||
+ | |||
+ | <math>\bullet</math> If <math>3 \nmid x, 3\nmid y, 3\mid x-y</math>, then <math>\nu_3(x^3-y^3) = \nu_3(x-y) + \nu_3(3) = \nu_3(x-y) + 1</math> | ||
+ | |||
+ | |||
+ | Then we classify all cube numbers <math>\mod{3^7}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\bullet</math> <math>A = \{a : 1\leq a \leq 3^6, 9\mid a\}</math> | ||
+ | |||
+ | We can write <math>A = \{a: a=9k, 1\leq k \leq 3^4\}</math>, so <math>|A| = 3^4</math>. | ||
+ | |||
+ | <math>\bullet</math> If <math>k \equiv 0 \mod{3}</math>, <math>k^3 \equiv 0 \mod{3}, a^3 \equiv 3^6k^3 \equiv 0 \mod{3^7}</math>, there are 27 roots. | ||
+ | <math>\bullet</math> If <math>k \equiv 1 \mod{3}</math>, <math>k^3 \equiv 1 \mod{3}, a^3 \equiv 3^6k^3 \equiv 3^6 \mod{3^7}</math>, there are 27 roots. | ||
+ | <math>\bullet</math> If <math>k \equiv 2 \mod{3}</math>, <math>k^3 \equiv 2 \mod{3}, a^3 \equiv 3^6k^3 \equiv 2\times 3^6 \mod{3^7}</math>, there are 27 roots. | ||
+ | |||
+ | |||
+ | <math>\bullet</math> <math>B = \{a : 1\leq a \leq 3^6, 3\mid a, 9 \nmid a\}</math> | ||
+ | |||
+ | We can write <math>B = \{a: a=9k+3 \text{ or }a=9k+6, 0\leq k < 3^4\}</math>, so <math>|B| = 2 \times 3^4</math>. | ||
+ | |||
+ | For <math>x,y \in \{a: a=9k+3, 0\leq k < 3^4\}</math>, let <math>x = 3a, y= 3b</math> and hence <math>3 \nmid a, 3\nmid b, 3\mid a-b</math>. | ||
+ | |||
+ | <math>(3a)^3 - (3b)^3 \equiv 0 \mod{3^7}</math> | ||
+ | <math>\iff a^3 - b^3 \equiv 0 \mod{3^4}</math> | ||
+ | <math>\iff \nu(a^3-b^3) \geq 4</math> | ||
+ | <math>\iff \nu(a-b) \geq 3</math> | ||
+ | <math>\iff a - b\equiv 0 \mod{3^3}</math> | ||
+ | <math>\iff x - y\equiv 0 \mod{3^4}</math> | ||
+ | |||
+ | For <math>k = 0, ..., 8</math>, each has 9 roots. | ||
+ | |||
+ | Since <math>(9k+3)^3 \equiv 3^6k^3+3^6k^2+3^5k + 3^3 \equiv 3^5m + 3^3 \mod{3^7}</math>, <math>0\leq m \leq 8</math>. They are the corresponding classes. | ||
+ | |||
+ | Same apply to <math>x,y \in \{a: a=9k+6, 0\leq k < 3^4\}</math>. For <math>k = 0, ..., 8</math>, each has 9 roots. | ||
+ | |||
+ | Since <math>(9k+6)^3 \equiv 3^6k^3+2\times3^6k^2+4\times3^5k + 8\times3^3 \equiv 3^5m - 3^3 \mod{3^7}</math>, <math>0\leq m \leq 8</math>. They are the corresponding classes. | ||
+ | |||
+ | <math>\bullet</math> <math>C = \{a : 1\leq a \leq 3^6, 3\nmid a\}</math> | ||
+ | |||
+ | We write <math>C = \{a: a=3k+1 \text{ or }a=3k+2, 0\leq k < 3^5\}</math>, so <math>|C| = 2 \times 3^5</math>. | ||
+ | |||
+ | For <math>a,b \in \{a: a=3k+1, 0\leq k < 3^5\}</math>, then <math>3 \nmid a, 3\nmid b, 3\mid a-b</math>. | ||
+ | |||
+ | <math>a^3 - b^3 \equiv 0 \mod{3^7}</math> | ||
+ | <math>\iff \nu(a^3-b^3) \geq 7</math> | ||
+ | <math>\iff \nu(a-b) \geq 6</math> | ||
+ | <math>\iff a - b\equiv 0 \mod{3^6}</math> | ||
+ | For <math>k = 0, ..., 3^5-1</math>, 1 root each. | ||
+ | |||
+ | <math>(3k+1)^3 \equiv 3^3k^3+3^3k^2+3^2k + 1 \equiv 3^2m + 1 \mod{3^7}</math>, <math>0\leq m < 3^5</math>. They are the corresponding classes. | ||
+ | |||
+ | Same apply to <math>x,y \in \{a: a=3k+2, 0\leq k < 3^5\}</math>. For <math>k = 0, ..., 3^5-1</math>, 1 root each. | ||
+ | |||
+ | <math>(3k+2)^3 \equiv 3^3k^3+2\times3^3k^2+4\times3^2k + 8 \equiv 3^2m - 1 \mod{3^7}</math>, <math>0\leq m < 3^5</math>. They are the corresponding classes. | ||
+ | |||
+ | |||
+ | Summarized the results: | ||
+ | |||
+ | <math>\bullet</math> <math>A</math>: If <math>x \equiv 0, 3^6, 2\times3^6 \mod{3^7}</math>, then <math>x</math> has 27 roots. <math>|A| = 3^4</math>. | ||
+ | <math>\bullet</math> <math>B</math>: If <math>x \equiv 3^5m \pm 3^3 \mod{3^7}</math>, then <math>x</math> has 9 roots. <math>|B| = 2\times3^4</math>. | ||
+ | <math>\bullet</math> <math>C</math>: If <math>x \equiv 3^2m \pm 1 \mod{3^7}</math>, then <math>x</math> has 1 root. <math>|C| = 2\times3^5</math>. | ||
+ | <math>\bullet</math> Otherwise, <math>x</math> has no roots. | ||
+ | |||
+ | |||
+ | We do the final combinatorial problem. | ||
+ | |||
+ | |||
+ | <math>\bullet</math> Case: <math>A,A,A</math>: <math>|A| \times |A| \times 27 = \boxed{3 \times 3^{10}}</math> | ||
+ | <math>\bullet</math> Case <math>A,A,B</math>: No solution. | ||
+ | <math>\bullet</math> Case <math>A,A,C</math>: No solution. | ||
+ | <math>\bullet</math> Case: <math>A,B,B</math>: <math>3 \times |A| \times |B| \times 9 = \boxed{6 \times 3^{10}}</math> | ||
+ | <math>\bullet</math> Case <math>A,A,B</math>: No solution. | ||
+ | <math>\bullet</math> Case: <math>A,C,C</math>: <math>3 \times |A| \times |C| \times 1 = \boxed{2 \times 3^{10}}</math> | ||
+ | <math>\bullet</math> Case <math>B,B,C</math>: No solution. | ||
+ | <math>\bullet</math> Case <math>B,B,B</math>: No solution. | ||
+ | <math>\bullet</math> Case <math>B,C,C</math>: <math>3 \times |B| \times |C| \times 1 = \boxed{4 \times 3^{10}}</math> | ||
+ | <math>\bullet</math> Case <math>C,C,C</math>: No solution. | ||
+ | |||
+ | Total is <math>(3+6+2+4)3^{10}=15\times 3^{10}</math>. | ||
+ | |||
+ | <math>3^5 = 243 \equiv 43 \mod{200},43^2=1600+240+9\equiv49\mod{200}</math> | ||
+ | |||
+ | Hence <math>15\times3^{10}\equiv15\times49\equiv735\mod{1000}</math> | ||
+ | |||
+ | Answer is <math>\boxed{735}</math>. | ||
+ | |||
+ | ~Rakko12 | ||
==See also== | ==See also== |
Revision as of 23:39, 14 February 2025
Problem
Let denote the number of ordered triples of positive integers
such that
and
is a multiple of
. Find the remainder when
is divided by
.
Solution
First, state the LTE Lemma for , which we might use.
If
, then
![]()
If
, then
![]()
Then we classify all cube numbers
We can write, so
.
If
,
, there are 27 roots.
If
,
, there are 27 roots.
If
,
, there are 27 roots.
![]()
![]()
We can write, so
.
For, let
and hence
.
![]()
![]()
![]()
![]()
![]()
For
, each has 9 roots. Since
,
. They are the corresponding classes.
Same apply to. For
, each has 9 roots.
Since,
. They are the corresponding classes.
We write, so
.
For, then
.
![]()
![]()
![]()
For
, 1 root each.
,
. They are the corresponding classes.
Same apply to. For
, 1 root each.
,
. They are the corresponding classes.
Summarized the results:
![]()
: If
, then
has 27 roots.
.
![]()
: If
, then
has 9 roots.
.
![]()
: If
, then
has 1 root.
.
Otherwise,
has no roots.
We do the final combinatorial problem.
Case:
:
![]()
Case
: No solution.
Case
: No solution.
Case:
:
![]()
Case
: No solution.
Case:
:
![]()
Case
: No solution.
Case
: No solution.
Case
:
![]()
Case
: No solution.
Total is .
Hence
Answer is .
~Rakko12
See also
2025 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.