Difference between revisions of "2006 AIME I Problems/Problem 1"
m (Formatting) |
m (Formatting) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | In [[quadrilateral]] <math> ABCD</math>, <math>\angle B </math> is a [[right angle]], [[diagonal]] <math>\overline{AC}</math> is [[perpendicular]] to <math>\overline{CD}</math>, <math>AB=18</math>, <math>BC=21</math>, and <math>CD=14</math>. Find the [[perimeter]] of <math>ABCD</math>. | ||
− | + | == Solution == | |
− | |||
− | == Solution | ||
− | |||
From the problem statement, we construct the following diagram: | From the problem statement, we construct the following diagram: | ||
<center><asy> | <center><asy> | ||
Line 13: | Line 11: | ||
Using the [[Pythagorean Theorem]]: | Using the [[Pythagorean Theorem]]: | ||
− | < | + | <div style="text-align:center"><math> (AD)^2 = (AC)^2 + (CD)^2 </math></div> |
− | < | + | |
− | Substituting <math>AB^2 + BC^2</math> for <math>AC^2</math>: | + | <div style="text-align:center"><math> (AC)^2 = (AB)^2 + (BC)^2 </math></div> |
− | < | + | |
+ | Substituting <math>(AB)^2 + (BC)^2 </math> for <math> (AC)^2 </math>: | ||
+ | |||
+ | <div style="text-align:center"><math> (AD)^2 = (AB)^2 + (BC)^2 + (CD)^2 </math></div> | ||
+ | |||
Plugging in the given information: | Plugging in the given information: | ||
− | |||
− | |||
− | |||
− | |||
− | == | + | <div style="text-align:center"><math> (AD)^2 = (18)^2 + (21)^2 + (14)^2 </math></div> |
+ | <div style="text-align:center"><math> (AD)^2 = 961 </math></div> | ||
+ | |||
+ | <div style="text-align:center"><math> (AD)= 31 </math></div> | ||
+ | |||
+ | So the perimeter is <math> 18+21+14+31=84 </math>, and the answer is <math>\boxed{084}</math>. | ||
+ | |||
+ | == See also == | ||
{{AIME box|year=2006|n=I|before=First Question|num-a=2}} | {{AIME box|year=2006|n=I|before=First Question|num-a=2}} | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} | ||
− |
Revision as of 13:13, 3 February 2025
Problem
In quadrilateral ,
is a right angle, diagonal
is perpendicular to
,
,
, and
. Find the perimeter of
.
Solution
From the problem statement, we construct the following diagram:
![[asy] pointpen = black; pathpen = black + linewidth(0.65); pair C=(0,0), D=(0,-14),A=(-(961-196)^.5,0),B=IP(circle(C,21),circle(A,18)); D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40)); [/asy]](http://latex.artofproblemsolving.com/f/e/5/fe5ba5b6cc93f6a188115c7f4281a190091a9844.png)
Using the Pythagorean Theorem:


Substituting for
:

Plugging in the given information:



So the perimeter is , and the answer is
.
See also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.