Difference between revisions of "Mock AIME 1 Pre 2005 Problems/Problem 5"
(solution) |
(→Solution: latex not rendering on show preview mode, ???) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | Let <math>a=\sqrt[3]{x}, b = \sqrt[3]{20-x}</math>. Then <math>a+b = 2</math> and <math>a^3 + b^3 = 20</math>. Factoring, < | + | Let <math>a=\sqrt[3]{x}, b = \sqrt[3]{20-x}</math>. Then <math>a+b = 2</math> and <math>a^3 + b^3 = 20</math>. Factoring, <cmath>a^3 + b^3 = (a+b)((a+b)^2-3ab) = 2(4-3ab)= 8-6ab=20 \Longrightarrow ab = -2</cmath> |
Solving <math>a+b=2, ab=-2</math> gives us the quadratic <math>a^2 - 2a - 2 = 0</math>. The [[quadratic formula]] yields <math>a = \frac{2 - \sqrt{12}}{2} = 1 - \sqrt{3}</math>, and <math>x = a^3 = (1-\sqrt{3})^3 = 1 - 3\sqrt{3} + 9 - 3\sqrt{3} = 10 - \sqrt{108}</math>. Therefore, <math>p+q=\boxed{118}</math>. | Solving <math>a+b=2, ab=-2</math> gives us the quadratic <math>a^2 - 2a - 2 = 0</math>. The [[quadratic formula]] yields <math>a = \frac{2 - \sqrt{12}}{2} = 1 - \sqrt{3}</math>, and <math>x = a^3 = (1-\sqrt{3})^3 = 1 - 3\sqrt{3} + 9 - 3\sqrt{3} = 10 - \sqrt{108}</math>. Therefore, <math>p+q=\boxed{118}</math>. |
Latest revision as of 16:46, 21 March 2008
Problem
Let and be the two real values of for which The smaller of the two values can be expressed as , where and are integers. Compute .
Solution
Let . Then and . Factoring,
Solving gives us the quadratic . The quadratic formula yields , and . Therefore, .
See also
Mock AIME 1 Pre 2005 (Problems, Source) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |