Difference between revisions of "2000 AIME II Problems/Problem 10"

m (Problem)
m (minor)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
Call the [[center]] of the circle <math>O</math>. By drawing the lines from <math>O</math> tangent to the sides and from <math>O</math> to the vertices of the quadrilateral, eight congruent [[right triangle]]s are formed.
+
Call the [[center]] of the circle <math>O</math>. By drawing the lines from <math>O</math> tangent to the sides and from <math>O</math> to the vertices of the quadrilateral, four pairs of congruent [[right triangle]]s are formed.
  
 
Thus, <math>\angle{AOP}+\angle{POB}+\angle{COQ}+\angle{QOD}=180</math>, or <math>(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=180</math>.
 
Thus, <math>\angle{AOP}+\angle{POB}+\angle{COQ}+\angle{QOD}=180</math>, or <math>(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=180</math>.
Line 13: Line 13:
 
Solving gives <math>r^2=\boxed{647}</math>.
 
Solving gives <math>r^2=\boxed{647}</math>.
  
 +
== See also ==
 
{{AIME box|year=2000|n=II|num-b=9|num-a=11}}
 
{{AIME box|year=2000|n=II|num-b=9|num-a=11}}
 +
 +
[[Category:Intermediate Geometry Problems]]
 +
[[Category:Intermediate Trigonometry Problems]]

Revision as of 15:54, 30 August 2008

Problem

A circle is inscribed in quadrilateral $ABCD$, tangent to $\overline{AB}$ at $P$ and to $\overline{CD}$ at $Q$. Given that $AP=19$, $PB=26$, $CQ=37$, and $QD=23$, find the square of the radius of the circle.

Solution

Call the center of the circle $O$. By drawing the lines from $O$ tangent to the sides and from $O$ to the vertices of the quadrilateral, four pairs of congruent right triangles are formed.

Thus, $\angle{AOP}+\angle{POB}+\angle{COQ}+\angle{QOD}=180$, or $(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=180$.

Take the $\tan$ of both sides and use the identity for $\tan(A+B)$ to get $\tan(\arctan(\tfrac{19}{r})+\arctan(\tfrac{26}{r}))+\tan(\arctan(\tfrac{37}{r})+\arctan(\tfrac{23}{r}))=n\cdot0=0$.

Use the identity for $\tan(A+B)$ again to get $\frac{\tfrac{45}{r}}{1-19\cdot\tfrac{26}{r^2}+\frac{\tfrac{60}{r}}{1-37\cdot\tfrac{23}{r^2}}}=0$.

Solving gives $r^2=\boxed{647}$.

See also

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions